cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A333105 Number of nonnegative lattice paths from (0,0) to (n,0) where the allowed steps at (x,y) are (1,v) with v in {-1,0,...,max(y,1)}.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 128, 331, 880, 2402, 6724, 19285, 56612, 169908, 520723, 1627477, 5180064, 16766824, 55112302, 183710312, 620213500, 2118094664, 7309077920, 25459737905, 89438446602, 316606738516, 1128566016617, 4048230694964, 14604517154115
Offset: 0

Views

Author

Alois P. Heinz, Mar 07 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(x=0, 1, add(
          b(x-1, y+j), j=-min(1, y)..min(max(1, y), x-y-1)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..29);
  • Mathematica
    b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[b[x - 1, y + j],
         {j, -Min[1, y], Min[Max[1, y], x - y - 1]}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 29] (* Jean-François Alcover, Mar 30 2021, after Alois P. Heinz *)

Formula

a(n) >= A001006(n) with equality only for n <= 6.
a(n) ~ c * 4^n / n^(3/2), where c = 0.0019335749177095597674777855613451543338378695415042866523284... - Vaclav Kotesovec, Oct 24 2021

A230551 Number of involutions avoiding the pattern 2431.

Original entry on oeis.org

1, 2, 4, 10, 24, 62, 154, 396, 992, 2536, 6376, 16238, 40914, 103954, 262298, 665478, 1680726, 4260262, 10766470, 27274444
Offset: 1

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 26, only 35142 and 52431 contain the pattern 2431, so a(5) = 24.
		

Crossrefs

A230552 Number of involutions avoiding the pattern 2341.

Original entry on oeis.org

1, 2, 4, 10, 25, 66, 170, 441, 1124, 2870, 7273, 18477, 46825, 118917, 301734, 766525, 1946293, 4944614, 12557685
Offset: 1

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 52341 contains the pattern 2341, so a(5) = 25.
		

Crossrefs

A230555 Number of involutions avoiding 3421.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 66, 173, 460, 1218, 3240, 8602, 22878, 60794, 161668, 429752, 1142758, 3038173, 8078606, 21479469, 57113888
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 45312 contains the pattern 3421, so a(5) = 25.
		

Crossrefs

A230553 Number of involutions avoiding the pattern 1342.

Original entry on oeis.org

1, 1, 2, 4, 10, 24, 62, 156, 406, 1040, 2714, 7012, 18322, 47560, 124358, 323708, 846766, 2208032, 5777330, 15082372, 39469786
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 14523 and 15342 contain the pattern 1342, so a(5) = 24.
		

Crossrefs

A230554 Number of involutions avoiding the pattern 1324.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 126, 321, 820, 2160, 5654, 15272, 40758, 112280, 304471, 852164, 2341980, 6640755, 18460066, 52915999
Offset: 0

Views

Author

Cheyne Homberger, Oct 23 2013

Keywords

Examples

			Of the 26 involutions of length 5, only 21435, 13254, 13245, 14325, and 12435 contain the pattern 1324, so a(5) = 21.
		

Crossrefs

A230557 The number of 123-avoiding simple involutions of length n.

Original entry on oeis.org

1, 2, 0, 0, 2, 3, 2, 5, 10, 17, 22, 44, 68, 127, 184, 356, 530, 1017, 1502, 2906, 4312, 8351, 12388, 24067, 35748, 69577, 103404, 201642, 299882, 585691, 871498, 1704509, 2537522, 4969153, 7400782, 14508938, 21617096, 42422023, 63226948, 124191257, 185155568, 363985681, 542815792, 1067892398, 1592969006
Offset: 1

Views

Author

Jay Pantone, Nov 05 2013

Keywords

Comments

An interval in a permutation is a set of contiguous indices such that the set of values of these indices under the permutation is also contiguous. A permutation is simple if it has no proper intervals (those of length more than 1 and less than the whole permutation). - Charles R Greathouse IV, Nov 06 2013

Examples

			a(8) = 5 because there are 5 simple involutions of length 8 which avoid the pattern 123: 58371642, 64827153, 68375142, 75382614, and 75842613.
		

Crossrefs

Programs

  • PARI
    x='x+O('x^66); Vec((-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2))) \\ Joerg Arndt, Nov 05 2013

Formula

G.f.: x*(-1-2*x+x^6+2*x^3+6*x^5+2*x^7+4*x^5*(-3*x^4-2*x^2+1)^(1/2)+2*x^7*(-3*x^4-2*x^2+1)^(1/2)+x^4*(-3*x^4-2*x^2+1)^(1/2)+2*x^6*(-3*x^4-2*x^2+1)^(1/2)-2*x*(-3*x^4-2*x^2+1)^(1/2)-(-3*x^4-2*x^2+1)^(1/2)+x^2+3*x^4)/(3*x^6+2*x^6*(-3*x^4-2*x^2+1)^(1/2)+5*x^4+3*x^4*(-3*x^4-2*x^2+1)^(1/2)+x^2-1-(-3*x^4-2*x^2+1)^(1/2)).
a(n) ~ (2*sqrt(3)+3 + (-1)^n*(2*sqrt(3)-3)) * 3^(n/2) / (12 * sqrt(2*Pi*n)). - Vaclav Kotesovec, Jan 27 2015
Showing 1-7 of 7 results.