A121837 Least positive j such that Product_{k=1..n} D(k) + j is prime, where D() are the doublets, A020338.
2, 9, 7, 7, 17, 7, 29, 17, 19, 23, 23, 13, 29, 79, 19, 89, 97, 53, 43, 347, 127, 127, 149, 29, 167, 331, 379, 61, 59, 167, 199, 557, 107, 113, 43, 191, 439, 41, 263, 227, 109, 71, 227, 137, 149, 409, 271, 53, 157, 79, 503, 103, 461, 137, 587, 233, 491, 73, 367, 233, 449
Offset: 1
Links
- Michel Marcus, Table of n, a(n) for n = 1..200
Programs
-
PARI
D(n) = eval(Str(n, n)); \\ A020338 f(n) = prod(k=1, n, D(k)); \\ A121826 a(n) = my(q=f(n)); nextprime(q+1) - q; \\ Michel Marcus, Jan 07 2021
Comments