A121874 Numbers n such that Fibonacci(n) == 0 (mod triangular(n)).
1, 10, 60, 108, 180, 240, 250, 540, 600, 660, 768, 1008, 1200, 1320, 1620, 1800, 1860, 2160, 2520, 2688, 2736, 3000, 3060, 3300, 3360, 3528, 3888, 4200, 4800, 4860, 4968, 5050, 5280, 5520, 5580, 5880, 6120, 6480, 6600, 6720, 6840, 7320, 7560, 7680, 8100
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
GAP
Filtered([1..8250], n-> (Fibonacci(n) mod Binomial(n+1,2))=0 ); # G. C. Greubel, Oct 08 2019
-
Magma
[n: n in [1..8250] | Fibonacci(n) mod Binomial(n+1,2) eq 0]; // G. C. Greubel, Oct 08 2019
-
Mathematica
Select[Range@10000, Mod[Fibonacci@#, #(# + 1)/2] == 0 &]
-
PARI
for(n=1, 8250, if(Mod(fibonacci(n), binomial(n+1,2))==0, print1(n", "))) \\ G. C. Greubel, Oct 08 2019
-
Sage
[n for n in (1..8500) if Mod(fibonacci(n), binomial(n+1,2))==0] # G. C. Greubel, Oct 08 2019
Comments