cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122934 Triangle T(n,k) = number of partitions of n into k parts, with each part size divisible by the next.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 4, 2, 2, 1, 1, 1, 2, 4, 2, 4, 2, 2, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 3, 4, 7, 6, 7, 6, 6, 3, 4, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  1, 2, 1, 1;
  1, 1, 2, 1, 1;
  1, 3, 2, 2, 1, 1;
  ...
T(6,3) = 2 because of the 3 partitions of 6 into 3 parts, [4,1,1] and [2,2,2] meet the definition; [3,2,1] fails because 2 does not divide 3.
		

Crossrefs

Column k=1..4 give A057427, A032741, A049822, A121895.
Row sums give A003238.

Programs

  • Mathematica
    T[, 1] = 1; T[n, k_] := T[n, k] = DivisorSum[n, If[#==1, 0, T[#-1, k-1]]& ]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)

Formula

T(n,1) = 1. T(n,k+1) = Sum_{d|n, d1} T(d-1,k).

A367613 Numbers with exactly one comma-child.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1

Views

Author

N. J. A. Sloane, Dec 15 2023

Keywords

Comments

Complement of union of A367341 and A367346.
See A367338 for definition of comma-child.

Crossrefs

Cf. A121895, A367341 (numbers with no comma-children), A367346 (numbers with two comma-children).

Programs

  • Mathematica
    fQ[n_]:=Module[{k=n+10*Last[IntegerDigits[n]]+Range[9]},Length[Select[k,#-n==FromDigits[{Last[IntegerDigits[n]],First[IntegerDigits[#]]}]&]]]==1;
    Select[Range[83],fQ[#]&] (* Ivan N. Ianakiev, Dec 16 2023 *)
  • Python
    def ok(n):
        m = n + 10*(n%10)
        return len([m+y for y in range(1, 10) if int(str(m+y)[0]) == y]) == 1
    print([k for k in range(1, 100) if ok(k)]) # Michael S. Branicky, Dec 28 2023
Showing 1-2 of 2 results.