A122016 Riordan array(1, x*(1+2*x)/(1-x)).
1, 0, 1, 0, 3, 1, 0, 3, 6, 1, 0, 3, 15, 9, 1, 0, 3, 24, 36, 12, 1, 0, 3, 33, 90, 66, 15, 1, 0, 3, 42, 171, 228, 105, 18, 1, 0, 3, 51, 279, 579, 465, 153, 21, 1, 0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1, 0, 3, 69, 576, 2172, 3858, 3258, 1344, 276, 27, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 3, 1; 0, 3, 6, 1; 0, 3, 15, 9, 1; 0, 3, 24, 36, 12, 1; 0, 3, 33, 90, 66, 15, 1; 0, 3, 42, 171, 228, 105, 18, 1; 0, 3, 51, 279, 579, 465, 153, 21, 1; 0, 3, 60, 414, 1200, 1500, 828, 210, 24, 1;
Links
- Huyile Liang, Jinyang Zhang, and Yu Wang, Some properties of the matrix related to q-coloured coordination number, Filomat (2024) Vol. 38, No. 4, 1465-1477. See p. 1466.
Crossrefs
Programs
-
Mathematica
T[n_,k_]:=SeriesCoefficient[(1-x)/(1-(y+1)*x-2*y*x^2),{x,0,n},{y,0,k}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* Stefano Spezia, Dec 27 2023 *)
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1) + 2*T(n-2,k-1). - Philippe Deléham, Sep 25 2006
G.f.: (1-x)/(1-(y+1)*x-2*y*x^2). - Philippe Deléham, Jan 31 2012
Extensions
More terms from Stefano Spezia, Dec 27 2023
Comments