cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122019 Product of the first n semiprimes, divided by product of the first n primes, rounded down.

Original entry on oeis.org

2, 4, 7, 10, 13, 15, 18, 21, 23, 21, 22, 20, 17, 15, 12, 11, 9, 7, 6, 5, 4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Jonathan Vos Post, Oct 14 2006

Keywords

Comments

Note that this is nonmonotonic. What is the asymptotic value of the ratio A112141(n)/A002110(n)?

Examples

			a(1) = floor(4/2) = floor(2) = 2.
a(2) = floor(24/6) = floor(4) = 4.
a(3) = floor(216/30) = floor(7.2) = 7.
a(4) = floor(2160/210) = floor(10.2857143) = 10.
a(5) = floor(30240/2310) = floor(13.0909090909) = 13.
a(6) = floor(453600/30030) = floor(15.1048951) = 15.
a(7) = floor(9525600/510510) = floor(18.6589881) = 18.
a(8) = floor(209563200/9699690) = floor(21.6051441) = 21.
a(9) = floor(5239080000/223092870) = floor(23.4838523) = 23.
a(10) = floor(136216080000/6469693230) = floor(21.0544882) = 21.
a(11) = floor(4495130640000/200560490130) = floor(22.4128423) = 22.
a(12) = floor(152834441760000/7420738134810) = floor(20.5955848) = 20.
		

Crossrefs

Programs

  • Mathematica
    sp = Select[Range@ 250, PrimeOmega[#] == 2 &]; m = 1; Table[ Floor[m *= sp[[i]] / Prime[i]], {i, Length@ sp}] (* Giovanni Resta, Jun 13 2016 *)

Formula

a(n) = floor(A112141(n)/A002110(n)) = floor(Prod(i=1..n)semiprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A001358(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A001358(i)/A000040(i))).

Extensions

a(13)-a(82) from Giovanni Resta, Jun 13 2016