A122020 Sum[k=0..n] Eulerian[n,k]*n^k.
1, 6, 66, 1140, 28280, 948570, 41173776, 2238150600, 148570107264, 11804909261310, 1104566746764800, 120062928157552380, 14986973664751315968, 2127288759957421124610, 340440417300990616995840
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Eulerian number
- Eric Weisstein's World of Mathematics, Polylogarithm.
Programs
-
Mathematica
Table[Sum[Eulerian[n,k]*n^k,{k,0,n}],{n,1,25}] Flatten[{1, Table[(n-1)^(n+1)*PolyLog[-n, 1/n], {n, 2, 20}]}] (* Vaclav Kotesovec, Oct 16 2016 *)
Formula
a(n) = Sum[ Eulerian[n,k]*n^(n-k-1), {k,0,n} ] = n*A122778[n]. a(n) = n(n-1)*A086914[n] for n>1. a(n) = ((n-1)^(n+1)) * PolyLog[ -n, 1/n ] = ((n-1)^(n+1)) * Sum[ k^n/n^k, {k,1,Infinity} ] = ((n-1)^(n+1)) * A121376[n]/A121985[n] for n>1.
a(n) ~ exp(-1) * n! * n^(n+1) / log(n)^(n+1). - Vaclav Kotesovec, Jun 06 2022
Comments