cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122028 Least positive prime primitive root of n-th prime.

Original entry on oeis.org

3, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 7, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5, 2, 5, 2, 11, 3, 3, 2, 3, 2, 2, 7, 5, 2, 5, 2, 2, 2, 19, 5, 2, 3, 2, 3, 2, 7, 3, 7, 7, 11, 3, 5, 2, 43, 5, 3, 3, 2, 5, 17, 17, 2, 3, 19, 2, 2, 3, 7, 11, 2, 2, 5, 2, 5, 3, 29, 2, 2, 7, 5, 17, 2, 3, 13, 2, 3, 2, 13, 3, 2, 7, 5, 2, 3, 2, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane and Klaus Brockhaus, Sep 13 2006

Keywords

References

  • A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. 2.

Crossrefs

Cf. A002233 (least prime primitive root).

Programs

  • Maple
    f:= proc(n) local p,q;
    p:= ithprime(n);
    q:= 2:
    while numtheory:-order(q,p) <> p-1 do q:= nextprime(q) od:
    q
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 16 2017
  • Mathematica
    a[1] = 3; a[n_] := (p = Prime[n]; Select[Range[p], PrimeQ[#] && MultiplicativeOrder[#, p] == EulerPhi[p] &, 1]) // First; Table[a[n], {n, 100}]   (* Jean-François Alcover, Mar 30 2011 *)
    a[1] = 3; a[n_] := SelectFirst[ PrimitiveRootList[ Prime[n]], PrimeQ]; Array[a, 101] (* Jean-François Alcover, Sep 28 2016 *)

Formula

a(n) = A002233(n) for n>1. - Jonathan Sondow, May 18 2017