A122070 Triangle given by T(n,k) = Fibonacci(n+k+1)*binomial(n,k) for 0<=k<=n.
1, 1, 2, 2, 6, 5, 3, 15, 24, 13, 5, 32, 78, 84, 34, 8, 65, 210, 340, 275, 89, 13, 126, 510, 1100, 1335, 864, 233, 21, 238, 1155, 3115, 5040, 4893, 2639, 610, 34, 440, 2492, 8064, 16310, 21112, 17080, 7896, 1597, 55, 801, 5184, 19572, 47502, 76860, 82908, 57492, 23256, 4181
Offset: 0
Examples
Triangle begins: 1; 1, 2; 2, 6, 5; 3, 15, 24, 13; 5, 32, 78, 84, 34; 8, 65, 210, 340, 275, 89; 13, 126, 510, 1100, 1335, 864, 233; (0, 1, 1, -1, 0, 0, ...) DELTA (1, 1, 1, 0, 0, ...) begins : 1; 0, 1; 0, 1, 2; 0, 2, 6, 5; 0, 3, 15, 24, 13; 0, 5, 32, 78, 84, 34; 0, 8, 65, 210, 340, 275, 89; 0, 13, 126, 510, 1100, 1335, 864, 233;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n+ k+1) ))); # G. C. Greubel, Oct 02 2019
-
Magma
[Binomial(n,k)*Fibonacci(n+k+1): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
Maple
with(combinat): seq(seq(binomial(n,k)*fibonacci(n+k+1), k=0..n), n=0..10); # G. C. Greubel, Oct 02 2019
-
Mathematica
Table[Fibonacci[n+k+1]*Binomial[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
PARI
T(n,k) = binomial(n,k)*fibonacci(n+k+1); for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
Sage
[[binomial(n,k)*fibonacci(n+k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Oct 02 2019
Formula
T(n,n) = Fibonacci(2*n+1) = A001519(n+1) .
Sum_{k=0..n} T(n,k) = Fibonacci(3*n+1) = A033887(n) .
Sum_{k=0..n}(-1)^k*T(n,k) = (-1)^n = A033999(n) .
Sum_{k=0..floor(n/2)} T(n-k,k) = (Fibonacci(n+1))^2 = A007598(n+1).
Sum_{k=0..n} T(n,k)*2^k = Fibonacci(4*n+1) = A033889(n).
Sum_{k=0..n} T(n,k)^2 = A208588(n).
G.f.: (1-y*x)/(1-(1+3y)*x-(1+y-y^2)*x^2).
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A185384(n,n-k).
T(2n,n) = binomial(2n,n)*Fibonacci(3*n+1) = A208473(n).
Extensions
Corrected and extended by Philippe Deléham, Mar 13 2012
Term a(50) corrected by G. C. Greubel, Oct 02 2019
Comments