cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122075 Coefficients of a generalized Pell-Lucas polynomial read by rows.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 5, 7, 4, 1, 8, 15, 12, 5, 1, 13, 30, 31, 18, 6, 1, 21, 58, 73, 54, 25, 7, 1, 34, 109, 162, 145, 85, 33, 8, 1, 55, 201, 344, 361, 255, 125, 42, 9, 1, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1
Offset: 0

Views

Author

R. J. Mathar, Oct 16 2006

Keywords

Comments

A122075 is jointly generated with A037027 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+(x+1)*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Subtriangle of the triangle T(n,k) given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 11 2012

Examples

			Triangle begins:
  1
  2 1
  3 3 1
  5 7 4 1
  8 15 12 5 1
  13 30 31 18 6 1
A055830 = (1, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, ...) begins:
  1
  1, 0
  2, 1, 0
  3, 3, 1, 0
  5, 7, 4, 1, 0
  8, 15, 12, 5, 1, 0
  13, 30, 31, 18, 6, 1, 0
		

Crossrefs

See A055830 for another version.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A122075 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A037027 *)
    (* Clark Kimberling, Mar 05 2012 *)
    CoefficientList[CoefficientList[Series[-(1 + x)/(-1 + x*y + x + x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    T(n,k)={ sum(j=0,n-k+1, binomial(n-k-j+1,j)*binomial(n-j,k)) ; } { nmax=10 ; for(n=0,nmax, for(k=0,n, print1(T(n,k),",") ; ); ); }

Formula

T(n,k) = Sum_{j=0..n-k+1} binomial(n-k-j+1,j)*binomial(n-j,k).
Sum_{k>=0} T(n-k,k) = 2^n.
Sum_{k>=0} (-1)^k*T(n-k,k) = 2-delta(0,n).
G.f.: -(1+x)/(-1+x*y+x+x^2). - R. J. Mathar, Aug 11 2015