cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122147 Decimal expansion of Sum[ (-1)^(k+1) * 1/p(k)^p(k) ], where p(k) = Prime[k].

Original entry on oeis.org

2, 1, 3, 2, 8, 1, 7, 4, 8, 7, 0, 0, 7, 8, 5, 6, 9, 8, 2, 5, 5, 6, 2, 7, 4, 8, 1, 3, 6, 9, 8, 4, 8, 4, 3, 6, 0, 2, 7, 7, 2, 7, 9, 7, 2, 5, 3, 2, 2, 4, 6, 4, 1, 0, 0, 7, 1, 4, 2, 2, 2, 2, 0, 1, 2, 3, 8, 3, 9, 5, 6, 7, 6, 0, 0, 3, 7, 2, 6, 9, 0, 0, 5, 6, 3, 7, 1, 2, 2, 0, 1, 1, 8, 6, 1, 8, 8, 2, 3, 4, 4, 1, 5, 5, 5
Offset: 0

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

C = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,Infinity} ] = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... Partial sums are A122148[n] / A076265[n] = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,n} ] = 1/4, 23/108, 71983/337500, ...

Examples

			C = 0.2132817487007856982556274813698484360277279725322464100714222201238395676003\
726900563712201186188234415559844581411471306301650311286030077813464608267160\
801494597797561591251174806253914566160177882...
		

Crossrefs