cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122159 Period of A002067 modulo prime(n).

Original entry on oeis.org

1, 1, 8, 3, 10, 24, 32, 18, 22, 56, 30, 72, 80, 42, 23, 104, 29, 120, 66, 70, 144, 39, 41, 176, 192, 200, 51, 53, 216, 224, 63, 130, 272, 69, 296, 150, 312, 162, 166, 344, 178, 360, 95, 384, 392, 99, 105, 222, 226, 456, 464, 238, 480, 125, 512, 131, 536, 270, 552
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2008

Keywords

Examples

			A002067 modulo 5 is 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, 2, 2, 4, 4, 3, 3, 1, 1, ... with period 8.
		

Crossrefs

Programs

  • Mathematica
    max = 100; se = Series[InverseErf[2*x/Sqrt[Pi]], {x, 0, 2*max + 1}]; a[n_] := (2 n + 1)!/2^n*Coefficient[se, x, 2*n + 1]; A002067 = Table[a[n], {n, 0, max}]; period[lst_List] := Catch[lg = If[Length[lst] <= 5, 2, 5]; lst1 = lst[[1 ;; lg]]; km = Length[lst] - lg; Do[If[lst1 == lst[[k ;; k + lg - 1]], Throw[k - 1]]; If[k == km, Throw[0]], {k, 2, km}]]; Table[ period[Mod[A002067, Prime[n]] // Reverse] , {n, 1, 15}] (* Jean-François Alcover, Dec 17 2012 *)

Formula

a(n) = A122149(A000040(n)).

Extensions

a(9)-a(15) from Jean-François Alcover, Dec 17 2012
More terms from Jinyuan Wang, Jul 30 2022