A123013 a(n) = A122192(n)/6.
1, 0, -253, -1288, 191521, 1629320, -141854525, -1729034384, 103325091969, 1676517701264, -73862084838333, -1537330036703384, 51664189190888737, 1355829753195189272, -35196896202269431421, -1160994902209537876768, 23182613727557891170817, 970833262148740191853344
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (0,-759,-2576,-759,0,-1).
Crossrefs
Cf. A122192.
Programs
-
Mathematica
LinearRecurrence[{0,-759,-2576,-759,0,-1}, {1,0,-253,-1288,191521,1629320}, 31] (* G. C. Greubel, Jul 11 2021 *)
-
Sage
def A123013_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+506*x^2+1288*x^3+253*x^4)/(1+759*x^2+2576*x^3+759*x^4 +x^6) ).list() A123013_list(30) # G. C. Greubel, Jul 11 2021
Formula
G.f.: (1 + 506*x^2 + 1288*x^3 + 253*x^4)/(1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6). - G. C. Greubel, Jul 11 2021