A122196 Fractal sequence: count down by 2's from successive integers.
1, 2, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 15, 13, 11, 9, 7, 5, 3, 1, 16, 14, 12, 10, 8, 6, 4, 2, 17, 15, 13, 11, 9, 7, 5, 3, 1, 18, 16, 14, 12, 10, 8, 6, 4, 2, 19, 17
Offset: 1
Examples
The first few rows of the sequence a(n) as a triangle T(n, k): n/k 1 2 3 1 1 2 2 3 3, 1 4 4, 2 5 5, 3, 1 6 6, 4, 2
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a122196 n = a122196_list !! (n-1) a122196_list = concatMap (\x -> enumFromThenTo x (x - 2) 1) [1..] -- Reinhard Zumkeller, Jul 19 2012
-
Maple
From Johannes W. Meijer, Sep 09 2013: (Start) a := proc(n) local t: t:=floor((sqrt(4*n-3)-1)/2): floor(sqrt(4*n-1))-2*((n-1) mod (t+1)) end: seq(a(n), n=1..92); # End first program. T := (n, k) -> n-2*k+2: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..18); # End second program. (End)
-
Mathematica
Flatten@Range[Range[10], 1, -2] (* Birkas Gyorgy, Apr 07 2011 *)
Formula
From Boris Putievskiy, Sep 09 2013: (Start)
a(n) = floor(sqrt(4*n-1)) - 2*((n-1) mod (t+1)), where t = floor((sqrt(4*n-3)-1)/2). (End)
From Johannes W. Meijer, Sep 09 2013: (Start)
T(n, k) = n - 2*k + 2, for n >= 1 and 1 <= k <= floor((n+1)/2).
T(n, k) = A002260(n, n-2*k+2). (End)
Comments