A122250 Partial sums of A004128.
0, 1, 3, 7, 12, 18, 26, 35, 45, 58, 72, 87, 104, 122, 141, 162, 184, 207, 233, 260, 288, 318, 349, 381, 415, 450, 486, 526, 567, 609, 653, 698, 744, 792, 841, 891, 944, 998, 1053, 1110, 1168
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[Sum[Sum[Floor[3*j/3^k], {k, 1, j}], {j, 0, n}], {n, 0, 50}] (* G. C. Greubel, May 14 2017 *)
-
PARI
for(n=0,50, print1(sum(j=0,n, sum(k=0,j, floor(j/3^k))), ", ")) \\ G. C. Greubel, May 14 2017
Formula
G.f.: (1/(1-x))*Sum{k=0..infinity} ( x^(3^k)/((1-x)*(1-x^(3^k))) ).
a(n) = Sum_{j=0..n} ( Sum_{k=0..j} floor(j/3^k) ).