cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122252 Binet's factorial series. Numerators of the coefficients of a convergent series for the logarithm of the Gamma function.

Original entry on oeis.org

1, 1, 59, 29, 533, 1577, 280361, 69311, 36226519, 7178335, 64766889203, 32128227179, 459253205417, 325788932161, 2311165698322609, 287144996287039, 1215091897184850539, 402833263943353393, 476099430416027805187, 236881416523193720213, 650730651653461090091101
Offset: 1

Views

Author

Paul Drees (zemyla(AT)gmail.com), Aug 27 2006

Keywords

Examples

			Rational sequence starts: 1/12, 1/12, 59/360, 29/60, 533/280, 1577/168, 280361/5040, ...
c(1) = Integral_{x=0..1} x*(x - 1/2) / 1 = Integral_{x=0..1} (x^2 - x/2) = (x^3/3 - x^2/4) | {x, 0, 1} = 1/12.
		

Crossrefs

Cf. A122253 (denominators), A001163, A001164.

Programs

  • Maple
    r := n -> add((-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2)), j=1..n)/(2*n):
    a := n -> numer(r(n)); seq(a(n), n=1..21); # Peter Luschny, Sep 22 2021
  • Mathematica
    Rising[z_, n_Integer/;n>0] := z Rising[z + 1, n - 1]; Rising[z_, 0] := 1; c[n_Integer/;n>0] := Integrate[Rising[x, n] (x - 1/2), {x, 0, 1}] / n; Numerator@ Array[c, 19] (* updated by Robert G. Wilson v, Aug 15 2015 *)
  • PARI
    a(n) = numerator(sum(j=1, n, (-1)^(n-j)*stirling(n,j,1)*j/((j+1)*(j+2)))/(2*n)); \\ Michel Marcus, Sep 22 2021

Formula

a(n) = numerator(c(n)), where c(n) are given by Binet's formulas:
log Gamma z = (z - 1/2) log z - z + log(2*Pi)/2 + Sum_{n >= 1} c(n)/(z+1)^(n), where z^(n) is the rising factorial.
c(n) = (1/n)*Integral_{x=0..1} x^(n)*(x - 1/2).
a(n) = numerator((1/2n)*Sum_{j=1..n} (-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2))). - Peter Luschny, Sep 22 2021

Extensions

Edited by Peter Luschny, Sep 22 2021