cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122253 Binet's factorial series. Denominators of the coefficients of a convergent series for the logarithm of the Gamma function.

Original entry on oeis.org

12, 12, 360, 60, 280, 168, 5040, 180, 11880, 264, 240240, 10920, 13104, 720, 367200, 3060, 813960, 15960, 1053360, 27720, 3825360, 16560, 5023200, 163800, 982800, 3024, 2630880, 6960, 33227040, 229152, 116867520, 235620, 282744, 2520, 1612119600, 7676760, 46060560
Offset: 1

Views

Author

Paul Drees (zemyla(AT)gmail.com), Aug 27 2006

Keywords

Comments

See A122252 for references and formulas.

Examples

			c(1) = (1/1)*Integral_{x=0..1} x*(x - 1/2) dx = Integral_{x=0..1} (x^2 - x/2) dx = (x^3/3 - x^2/4)|{x=1} - (x^3/3 - x^2/4)|{x=0} = 1/12.
		

Crossrefs

Cf. A122252 (numerators), A001163, A001164.

Programs

  • Maple
    r := n -> add((-1)^(n-j)*Stirling1(n,j)*j/((j+1)*(j+2)), j = 1..n)/(2*n):
    a := n -> denom(r(n)); seq(a(n), n = 1..37); # Peter Luschny, Sep 22 2021
  • Mathematica
    Rising[z_, n_Integer/;n>0] := z Rising[z + 1, n - 1]; Rising[z_, 0] := 1; c[n_Integer/;n>0] := Integrate[Rising[x, n] (x - 1/2), {x, 0, 1}] / n;
  • PARI
    a(n) = denominator(sum(j=1, n, (-1)^(n-j)*stirling(n,j,1)*j/((j+1)*(j+2)))/(2*n)); \\ Michel Marcus, Sep 22 2021

Formula

c(n) = (1/n)*Integral_{x=0..1} x^n*(x - 1/2) dx.