A122254 Numbers with 3-smooth Euler's totient (A000010).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 24, 26, 27, 28, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 45, 48, 51, 52, 54, 56, 57, 60, 63, 64, 65, 68, 70, 72, 73, 74, 76, 78, 80, 81, 84, 85, 90, 91, 95, 96, 97, 102, 104, 105, 108, 109, 111, 112, 114
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Aliska Gibbins and Lawrence Smolinsky, Geometric Constructions with Ellipses, The Mathematical Intelligencer 31(1) (2009), 57-62.
Programs
-
Mathematica
Select[Range@115, Max[FactorInteger[EulerPhi[#]][[All, 1]]] < 5 &] (* Ivan Neretin, Jul 28 2015 *)
-
PARI
is(n)=n=eulerphi(n);n>>=valuation(n,2);n==3^valuation(n,3) \\ Charles R Greathouse IV, Feb 21 2013
-
PARI
list(lim)=my(v=List(),u,t);for(i=0,log(lim--+1.5)\log(3),t=3^i;while(t<=lim,if(isprime(t+1),listput(v,t+1));t<<=1));v=vecsort(Vec(v));u=List([1]);for(i=3,#v,for(j=1,#u,t=v[i]*u[j];if(t>lim,next(2));listput(u,t)));u=vecsort(Vec(u));v=List(u);for(i=1,#u,t=u[i];while((t*=3)<=lim,listput(v,t)));u=Vec(v);v=List(u);for(i=1,#u,t=u[i];while((t<<=1)<=lim,listput(v,t)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Feb 22 2013
-
Python
from itertools import count, islice from sympy import multiplicity, factorint def A065333(n): return int(3**(multiplicity(3,m:=n>>(~n&n-1).bit_length()))==m) def A122254_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:all(p<=3 or (e==1 and A065333(p-1)) for p,e in factorint(n).items()), count(max(startvalue,1))) A122254_list = list(islice(A122254_gen(),40)) # Chai Wah Wu, Dec 20 2024
Formula
a(n) = A048135(n-2) for n>2.
Sum_{n>=1} 1/a(n) = 3 * Product_{p > 3 in A005109} (1 + 1/p) = 5.38288865867495675807... . - Amiram Eldar, Dec 03 2022
Comments