cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122201 Signature permutations of FORK-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "FORK". In this recursion scheme the given automorphism is first applied at the root of binary tree, before the algorithm recurses down to the both branches (new ones, possibly changed by the given automorphism). I.e. this corresponds to the pre-order (prefix) traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures FORK and !FORK can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122202.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A057163, 2: A057511, 3: A122341, 4: A122343, 5: A122345, 6: A122347, 7: A122349, 8: A082325, 9: A082360, 10: A122291, 11: A122293, 12: A074681, 13: A122295, 14: A122297, 15: A122353, 16: A122355, 17: A074684, 18: A122357, 19: A122359, 20: A122361, 21: A122301. Other rows: row 4253: A082356, row 65796: A082358, row 79361: A123493.

Programs

  • Scheme
    (define (FORK foo) (letrec ((bar (lambda (s) (let ((t (foo s))) (if (pair? t) (cons (bar (car t)) (bar (cdr t))) t))))) bar))
    (define (!FORK foo!) (letrec ((bar! (lambda (s) (cond ((pair? s) (foo! s) (bar! (car s)) (bar! (cdr s)))) s))) bar!))

A130400 Signature permutations of INORDER-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 11, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12
Offset: 0

Views

Author

Antti Karttunen, Jun 11 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "INORDER". In this recursion scheme the given automorphism is applied at the root of binary tree after the algorithm has recursed down the car-branch (the left hand side tree in the context of binary trees), but before the algorithm recurses down to the cdr-branch (the right hand side of the binary tree, with respect to the new orientation of branches, possibly changed by the applied automorphism). I.e. this corresponds to the depth-first in-order traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures INORDER and !INORDER can be used to obtain such a transformed automorphism from any constructively (or respectively: destructively) implemented automorphism. Each row occurs only once in this table and similar notes as given e.g. for table A122202 apply here, e.g. the rows of A089840 all occur here as well. This transformation has many fixed points besides the trivial identity automorphism *A001477: at least *A069770, *A089863 and *A129604 stay as they are. Inverses of these permutations can be found in table A130401.

Crossrefs

Cf. The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A073284, 3: A122341, 4: A130381, 5: A130383, 6: A130385, 7: A122350, 8: A082341, 9: A130387, 10: A130389, 11: A130391, 13: A130393, 14: A130395, 15: A130397, 16: A130927, 17: A071657, 18: A130929, 19: A130931, 20: A130933, 21: A089863. Other rows: row 1654694: A073280, row 1654720: A129604.
Cf. As a sequence differs from A130401 for the first time at n=80, where a(n)=11, while A130401(n)=14.

Programs

  • Scheme
    (define (INORDER f) (letrec ((g (lambda (s) (cond ((not (pair? s)) s) (else (let ((t (f (cons (g (car s)) (cdr s))))) (cons (car t) (g (cdr t))))))))) g))
    (define (!INORDER f!) (letrec ((g! (lambda (s) (cond ((pair? s) (g! (car s)) (f! s) (g! (cdr s)))) s))) g!))

A122342 Row 3 of A122202.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 6, 7, 8, 13, 12, 11, 9, 10, 15, 14, 16, 18, 17, 19, 20, 21, 22, 36, 35, 34, 31, 32, 33, 30, 28, 24, 23, 29, 25, 26, 27, 41, 40, 39, 37, 38, 43, 42, 47, 50, 49, 44, 48, 45, 46, 52, 51, 53, 55, 54, 56, 57, 59, 58, 60, 61, 62, 63, 64, 106, 105, 104, 100, 101
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

The signature-permutation of the automorphism which is derived from the third non-recursive automorphism *A089850 with recursion schema KROF (see A122202 for the definition).

Crossrefs

Inverse: A122341.
Showing 1-3 of 3 results.