cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122373 Expansion of (c(q)^3 + c(q^2)^3) / 27 in powers of q where c() is a cubic AGM theta function.

Original entry on oeis.org

1, 4, 9, 16, 24, 36, 50, 64, 81, 96, 120, 144, 170, 200, 216, 256, 288, 324, 362, 384, 450, 480, 528, 576, 601, 680, 729, 800, 840, 864, 962, 1024, 1080, 1152, 1200, 1296, 1370, 1448, 1530, 1536, 1680, 1800, 1850, 1920, 1944, 2112, 2208, 2304, 2451, 2404
Offset: 1

Views

Author

Michael Somos, Aug 30 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) = n^2 and n > 0 if and only if n = 2^i * 3^j with i, j >=0 (numbers in A003586). - Michael Somos, Jun 08 2012

Examples

			G.f. = q + 4*q^2 + 9*q^3 + 16*q^4 + 24*q^5 + 36*q^6 + 50*q^7 + 64*q^8 + 81*q^9 + 96*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 50; QP = QPochhammer; s = QP[q^2]^5*QP[q^3]^4*(QP[q^6]/QP[q]^4) + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, from first formula *)
  • PARI
    {a(n) = my(A, p, e, f); if( n<0, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, p^(2*e), f =- (-1)^(p%3); (p^(2*e + 2) - f^(e+1)) / (p^2 - f))))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^4 * eta(x^6 + A) / eta(x + A)^4, n))};

Formula

Expansion of eta(q^2)^5 * eta(q^3)^4 * eta(q^6) / eta(q)^4 in powers of q.
a(n) is multiplicative with a(2^e) = 4^e, a(3^e) = 9^e, a(p^e) = (p^(2*e + 2) - f^(e+1)) / (p^2 - f) where f = 1 if p == 1 (mod 6), f = -1 if p == 5 (mod 6).
Euler transform of period 6 sequence [4, -1, 0, -1, 4, -6, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 3^(1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is g.f. for A132000.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) * (1 + (1+(-1)^k)/8).
G.f.: Product_{k>0} (1 - x^k) * (1 + x^(3*k)) * (1 + x^k)^5 * (1 - x^(3*k))^5.
Expansion of psi(q)^2 * psi(q^3)^2 * phi(-q^3)^3 / phi(-q) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 23 2012
Expansion of c(q) * c(q^2) * b(q^2)^2 / (9 * b(q)) in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Jun 23 2012
G.f.: Sum_{k>0} k^2 * x^k * (1 + x^(2*k)) / (1 + x^(2*k) + x^(4*k)). - Michael Somos, Jul 05 2020
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Pi^3/(18*sqrt(3)) = 0.994526... (A346585). - Amiram Eldar, Dec 22 2023