cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122378 Numbers m such that m^2 > S(m)!, where S(m)! is the smallest factorial divisible by m.

Original entry on oeis.org

2, 3, 6, 8, 12, 15, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 224, 240, 252, 280, 288, 315, 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 648, 672, 720, 756, 810, 840, 864, 896, 945, 960, 1008, 1080
Offset: 1

Views

Author

Jonathan Sondow, Sep 03 2006

Keywords

Comments

It is conjectured that m^2 < S(m)! for almost all m.
For each k > 1, at most tau(k!)/2 = A000005(k!)/2 are in the sequence because of that k. So at most Sum_{k = 1..m} tau(k!)/(2*m!) of the numbers up to m! are terms. This tends to 0 as m tends to infinity. - David A. Corneth, Dec 29 2019

Examples

			15^2 = 225 > 120 = 5! = S(15)!, so 15 is a member.
		

Crossrefs

Programs

  • Mathematica
    nmax = 1100;
    Do[m = 1; While[!IntegerQ[m!/n], m++]; S[n] = m, {n, 1, nmax}];
    Select[Range[nmax], #^2 > S[#]!&] (* Jean-François Alcover, Dec 04 2018 *)
  • PARI
    upto(n) = {my(res = List(), maxf = 1, olddiv, newdiv, n2 = n^2, cf = 1); while(maxf! < n2, maxf++); maxf--; olddiv = divisors(0!); newdiv = divisors(1!); for(i = 2, maxf, olddiv = newdiv; cf*=i; newdiv = divisors(cf); cans = setminus(Set(newdiv), Set(olddiv)); for(j = 1, #cans, if(cans[j]^2 > cf, if(cans[j] <= n, listput(res, cans[j]) , next(2) ); ) ) ); listsort(res); res } \\ David A. Corneth, Dec 29 2019