A122378 Numbers m such that m^2 > S(m)!, where S(m)! is the smallest factorial divisible by m.
2, 3, 6, 8, 12, 15, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 224, 240, 252, 280, 288, 315, 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 648, 672, 720, 756, 810, 840, 864, 896, 945, 960, 1008, 1080
Offset: 1
Keywords
Examples
15^2 = 225 > 120 = 5! = S(15)!, so 15 is a member.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and E. W. Weisstein, MathWorld: Smarandache Function
- Index entries for sequences related to factorial numbers.
Programs
-
Mathematica
nmax = 1100; Do[m = 1; While[!IntegerQ[m!/n], m++]; S[n] = m, {n, 1, nmax}]; Select[Range[nmax], #^2 > S[#]!&] (* Jean-François Alcover, Dec 04 2018 *)
-
PARI
upto(n) = {my(res = List(), maxf = 1, olddiv, newdiv, n2 = n^2, cf = 1); while(maxf! < n2, maxf++); maxf--; olddiv = divisors(0!); newdiv = divisors(1!); for(i = 2, maxf, olddiv = newdiv; cf*=i; newdiv = divisors(cf); cans = setminus(Set(newdiv), Set(olddiv)); for(j = 1, #cans, if(cans[j]^2 > cf, if(cans[j] <= n, listput(res, cans[j]) , next(2) ); ) ) ); listsort(res); res } \\ David A. Corneth, Dec 29 2019
Comments