cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143535 Triangle read by rows, A122414 * A000012; 1<=k<=n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 23 2008

Keywords

Comments

Row sums = A008472, the sum of distinct primes dividing n: (0, 2, 3, 2, 5, 5, 7, 2, 3, 7,...). Example: a(10) = 7 = 2 + 5.

Examples

			First few rows of the triangle =
0;
1, 1;
1, 1, 1;
1, 1, 0, 0;
1, 1, 1, 1, 1;
2, 2, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1;
1, 1, 0, 0, 0, 0, 0, 0;
1, 1, 1, 0, 0, 0, 0, 0, 0;
2, 2, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
Example: row 6 = (2, 2, 1, 0, 0, 0) = partial sums starting from the right of row 6, A122414: (0, 1, 1, 0, 0, 0).
		

Crossrefs

Formula

Triangle read by rows, A122414 * A000012; 1<=k<=n. By rows, partial sums of A122414 terms starting from the right.

A122415 Triangle T(n,k) for 1 < k < n read by rows, where T(n,k) = 1 if gcd(n,k) is prime, 0 otherwise.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 3

Views

Author

Klaus Brockhaus, Sep 03 2006

Keywords

Comments

Triangle defined in A122414 without first column and main diagonal.

Crossrefs

Cf. A122414.
Row sums are in A087625. [From Klaus Brockhaus, May 29 2009]

Programs

  • PARI
    {m=14; v=vector(m,x,vector(x)); for(n=1,m,for(k=1,n-1,if(isprime(gcd(n+2,k+1)),v[n][k]=1))); for(n=1,m,for(k=1,n,print1(v[n][k],",")))}
Showing 1-2 of 2 results.