cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122441 Expansion of 2*(sqrt(1+8x)-3)/(sqrt(1+8x)-5).

Original entry on oeis.org

1, -1, 1, -5, 25, -141, 849, -5349, 34825, -232445, 1582081, -10938709, 76616249, -542472685, 3876400305, -27919883205, 202480492905, -1477306676445, 10836099051105, -79861379898165, 591082795606425, -4391625157145805, 32742445489969425, -244889639907014565
Offset: 0

Views

Author

Paul Barry, Sep 05 2006

Keywords

Crossrefs

Row sums of A122440.
Cf. A064311.

Programs

  • Maple
    f:= gfun:-rectoproc({(4 + 8*n)*a(n) + (-10 - 23*n)*a(n + 1) + (-3*n - 6)*a(n + 2), a(0) = 1, a(1) = -1, a(2) = 1},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Aug 22 2025
  • Sage
    def a(n):
        if n==0: return 1
        return -hypergeometric([1-n, n], [-n], -2).simplify()
    [a(n) for n in range(21)] # Peter Luschny, Nov 30 2014

Formula

a(n) = -hypergeometric([1-n, n], [-n], -2) if n>0. - Peter Luschny, Nov 30 2014
(4 + 8*n)*a(n) + (-10 - 23*n)*a(n + 1) + (-3*n - 6)*a(n + 2) = 0. - Robert Israel, Aug 22 2025

A341032 Numbers k such that A124440(k) is a square.

Original entry on oeis.org

1, 2, 10, 17, 469, 646, 1542, 1601, 24939, 25090, 43690, 50925, 77577, 84002, 131087, 156817, 174755, 182106, 220974, 293930, 371307, 389130, 394290, 401573, 440819, 492886, 584326, 609301, 839590, 935685, 1727207, 1775622, 1939666, 1948705, 2235041, 2267650
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 03 2021

Keywords

Comments

Terms in common with A341031, i.e. numbers such that both A066840(k) and A124440(k) are squares, include 1, 2, 10, 17, and 25090.

Examples

			a(4) = 17 is a term because A124440(17) = 100 = 10^2.
		

Crossrefs

Programs

  • Maple
    N:= 40000: # for terms <= N
    G:= add(numtheory:-mobius(n)*n*x^(2*n)/((1-x^n)*(1-x^(2*n))^2), n=1..N/2):
    S:= series(G, x, N+1):
    A66840:= [seq(coeff(S, x, j), j=1..N)]:
    f:= proc(n) n*numtheory:-phi(n)/2 - A66840[n] end proc:
    f(1):= 1: f(2):= 1:
    select(t -> issqr(f(t)), [$1..N]);

Extensions

More terms from Daniel Suteu, Feb 03 2021
Showing 1-2 of 2 results.