A122490 Least number k>1 such that k+10^n is a symmetric prime with symmetric digits (i.e. such that k+10^n is in A007500).
3, 7, 9, 7, 49, 33, 169, 7, 7, 207, 237, 91, 313, 261, 273, 79, 49, 2901, 51, 441, 193, 9, 531, 289, 1141, 67, 909, 331, 753, 2613, 657, 49, 4459, 603, 1531, 849, 2049, 259, 649, 2119, 1483, 63, 6747, 519, 3133, 937, 1159, 1999, 6921, 2949, 613, 4137, 1977, 31, 483, 883, 8553, 12117, 1009, 4347, 733
Offset: 1
Examples
3+10^1=13, 13 and 31 are symmetric primes with symmetric digits; 7+10^2=107, 107 and 701 are symmetric primes with symmetric digits; 9+10^3=1009, 1009 and 9001 are symmetric primes with symmetric digits.
Links
- Robert Israel, Table of n, a(n) for n = 1..722
Crossrefs
Cf. A007500
Programs
-
Maple
revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: f:= proc(n) local k,m; for k from 3 by 2 do m:= k+10^n; if isprime(m) and isprime(revdigs(m)) then return k fi od end proc: map(f, [$1..100]); # Robert Israel, Nov 09 2017
Extensions
Definition clarified, a(28) corrected, and more terms added by Robert Israel, Nov 09 2017