A122495 Integers corresponding to rational knots in Conway's enumeration.
1, 3, 22, 5, 32, 42, 312, 2112, 7, 52, 43, 322, 313, 2212, 21112, 62, 512, 44, 413, 4112, 332, 3212, 3113, 31112, 2312, 2222, 22112, 9, 72, 63, 54, 522, 513, 423, 4212, 4122, 41112, 342, 333, 3222, 3213, 31212, 31122, 311112, 2412, 2322, 23112, 22122, 21312
Offset: 1
Keywords
Examples
a(1) = 1 because 1 corresponds to the trivial knot. a(2) = 3 because 3 corresponds to the trefoil. a(3) = 22 because 22 corresponds to the figure-8 knot.
References
- Peter R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 209-211.
Links
- Alain Caudron, Classification des noeuds et des enlancements (see p. 168).
- J. H. Conway, An enumeration of knots and links and some of their algebraic properties, 1970. Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329-358 Pergamon, Oxford.
- Index entries for sequences related to knots
Programs
-
Mathematica
whereTangle[{n_}] := If[EvenQ[n], 1, 2]; whereTangle[{rest__, n_}] := Switch[whereTangle[{rest}], 1, 3, 2, Switch[whereTangle[{n}], 1, 2, 2, 1, 3, 3], 3, whereTangle[{n}]]; FromDigits /@ Prepend[Select[Flatten[Table[Reverse@SortBy[Flatten[Permutations /@ IntegerPartitions[n], 1], PadRight[#, n] &], {n, 10}], 1], OrderedQ[{Reverse[#], #}] && Last[#] != 1 && whereTangle[#] != 1 (*change to "==1" for rational 2-component links*) &], {1}] (* Andrey Zabolotskiy, May 22 2017 *)
Extensions
Sequence edited and more terms added by Andrey Zabolotskiy, May 22 2017
Comments