cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122551 Denominators of the coefficients of the series for InverseErf(x).

Original entry on oeis.org

2, 24, 960, 80640, 11612160, 2554675200, 797058662400, 334764638208000, 182111963185152000, 124564582818643968000, 104634249567660933120000, 105889860562472864317440000, 127067832674967437180928000000
Offset: 0

Views

Author

Marcus Blackburn (marcus.blackburn(AT)dial.pipex.com), Sep 20 2006

Keywords

Comments

Note: the term in x^11 in the series expansion above has a common factor of 7 between the numerator and denominator and is usually written 34807/364953600. The common factor of 7 occurs at n=6, 9, 12, etc. The sequence of the coefficients can be generated by combining this series with A002067.

Examples

			InverseErf(x) = (1/2*sqrt(Pi))*x + (1/24*Pi^(3/2))*x^3 + (7/960*Pi^(5/2))*x^5 + (127/80640*Pi^(7/2))*x^7 + (4369/11612160*Pi^(9/2))*x^9 + (243649/2554675200*Pi^(11/2))*x^11 + ...
		

Crossrefs

Programs

  • Maple
    denominators:=[seq((2*n+1)!*2^(n+1),n=0..14)]; a:=proc(n) if(n < 2) then RETURN(1) fi; sum('binomial(2*n,2*k)*a(k)*a(n-k-1)','k'=0..n-1); end; numerators:=[seq(a(n),n=0..14)];
  • Mathematica
    Table[(2*n + 1)!*2^(n + 1), {n,0,25}] (* G. C. Greubel, Mar 19 2017 *)
  • PARI
    for(n=0,25, print1((2*n+1)!*2^(n+1), ", ")) \\ G. C. Greubel, Mar 19 2017

Formula

a(n) = (2*n+1)!*2^(n+1).
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = sinh(1/sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(1/sqrt(2))/sqrt(2). (End)