A122551 Denominators of the coefficients of the series for InverseErf(x).
2, 24, 960, 80640, 11612160, 2554675200, 797058662400, 334764638208000, 182111963185152000, 124564582818643968000, 104634249567660933120000, 105889860562472864317440000, 127067832674967437180928000000
Offset: 0
Examples
InverseErf(x) = (1/2*sqrt(Pi))*x + (1/24*Pi^(3/2))*x^3 + (7/960*Pi^(5/2))*x^5 + (127/80640*Pi^(7/2))*x^7 + (4369/11612160*Pi^(9/2))*x^9 + (243649/2554675200*Pi^(11/2))*x^11 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..210
Programs
-
Maple
denominators:=[seq((2*n+1)!*2^(n+1),n=0..14)]; a:=proc(n) if(n < 2) then RETURN(1) fi; sum('binomial(2*n,2*k)*a(k)*a(n-k-1)','k'=0..n-1); end; numerators:=[seq(a(n),n=0..14)];
-
Mathematica
Table[(2*n + 1)!*2^(n + 1), {n,0,25}] (* G. C. Greubel, Mar 19 2017 *)
-
PARI
for(n=0,25, print1((2*n+1)!*2^(n+1), ", ")) \\ G. C. Greubel, Mar 19 2017
Formula
a(n) = (2*n+1)!*2^(n+1).
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = sinh(1/sqrt(2))/sqrt(2).
Sum_{n>=0} (-1)^n/a(n) = sin(1/sqrt(2))/sqrt(2). (End)
Comments