A122568 Least k (or 0 if no such k exists) such that 10^n+k is the least bemirp of a quartet of 4 different bemirps and the least bemirp of n+1 digits.
0, 0, 61, 61, 6861, 106881, 806881, 688611, 6088861, 169111, 6601911, 810681, 1161, 10086091, 6096691, 1016101, 69088101, 16106811, 60088191, 8608611, 6008001, 66169881, 160161601, 106898181, 689060101, 1811106801
Offset: 1
Examples
For n=3 10^3+61=1061, 1061, 1091, 1901, 1601 are 4 bemirps so a(3)=61 as 1061 is the least 4 digits prime like this For n=4 10^4+61=10061, 10061, 10091, 19001, 16001 are 4 bemirps so a(4)=61 as 10061 is the least 5 digits prime like this
Links
- P. CAMI, Table of n, a(n) for n=1..99
Crossrefs
Cf. A048895.