cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122658 a(n) = if n mod 2 = 1 then n^3*(n-1)^2/2 else n^5/2.

Original entry on oeis.org

0, 0, 16, 54, 512, 1000, 3888, 6174, 16384, 23328, 50000, 66550, 124416, 158184, 268912, 330750, 524288, 628864, 944784, 1111158, 1600000, 1852200, 2576816, 2944414, 3981312, 4500000, 5940688, 6652854, 8605184, 9560488, 12150000, 13405950, 16777216, 18399744
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2006

Keywords

Comments

Szeged index of product of two cycles of length n.

Crossrefs

Programs

  • Mathematica
    Table[If[OddQ[n],n^3 (n-1)^2/2,n^5/2],{n,0,40}] (* or *) LinearRecurrence[ {1,5,-5,-10,10,10,-10,-5,5,1,-1},{0,0,16,54,512,1000,3888,6174,16384,23328,50000},40] (* Harvey P. Dale, Nov 20 2016 *)

Formula

a(n) = (n^3*(1-(-1)^n+2*(-1+(-1)^n)*n+2*n^2))/4. G.f.: 2*x^2*(x^8 +7*x^7 +95*x^6 +113*x^5 +379*x^4 +149*x^3 +189*x^2 +19*x +8) / ((x -1)^6*(x +1)^5). - Colin Barker, Sep 20 2013
Sum_{n>=2} 1/a(n) = zeta(5)/16 + 7*zeta(3)/4 + 7*zeta(2)/2 + 6*log(2) - 12. - Amiram Eldar, May 15 2024