A122679 Invariant number of internal vertices of n-circum-C_5 H_5 systems.
0, 5, 25, 80, 225, 605, 1600, 4205, 11025, 28880, 75625, 198005, 518400, 1357205, 3553225, 9302480, 24354225, 63760205, 166926400, 437019005, 1144130625, 2995372880, 7841988025, 20530591205, 53749785600, 140718765605, 368406511225, 964500768080
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Azulenoids, MATCH, No. 34, 1996, 91-108.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
Programs
-
Mathematica
LinearRecurrence[{4,-4,1},{0,5,25},40] (* Harvey P. Dale, Apr 21 2015 *)
-
PARI
concat(0, Vec(-5*x^2*(1+x)/((x-1)*(x^2-3*x+1)) + O(x^40))) \\ Colin Barker, Nov 03 2016
Formula
a(n) = 15*Fibonacci(2*k-1)-5*Fibonacci(2*k)-10 = 5*A004146(n-1).
G.f.: -5*x^2*(1+x) / ( (x-1)*(x^2-3*x+1) ). - R. J. Mathar, Nov 23 2014
a(1)=0, a(2)=5, a(3)=25, a(n) = 4*a(n-1)-4*a(n-2)+a(n-3). - Harvey P. Dale, Apr 21 2015
a(n) = -5*2^(-1-n)*(2^(2+n)-(3-sqrt(5))^n*(3+sqrt(5))+(-3+sqrt(5))*(3+sqrt(5))^n). - Colin Barker, Nov 03 2016
Extensions
More terms from Harvey P. Dale, Apr 21 2015