A122735 Smallest prime of the form (n^k - k^n) for k > 1, or 1 if no such prime exists.
1, 7, 17, 1, 6102977801, 162287, 79792265017612001, 8375575711, 2486784401
Offset: 1
Keywords
Examples
a(1) = 1 because (1^k - k^1) = (1 - k) < 0 for k > 1. a(2) = 7 because 2^5 - 5^2 = 7 is prime, but (2^k - k^2) is not prime for 1 < k < 5, (2^2 - 2^2) = 0, (2^3 - 3^2) = -1, (2^4 - 4^2) = 0. a(4) = 1 because no prime of the form (4^k - k^4) exists; 4^k - k^4 = (2^k - k^2)*(2^k + k^2). a(12) = 83695120256591 = 12^13 - 13^12 = A024152(A122003(2)).
Comments