cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122747 Bishops on an n X n board (see Robinson paper for details).

Original entry on oeis.org

1, 4, 144, 14400, 2822400, 914457600, 442597478400, 299195895398400, 269276305858560000, 311283409572495360000, 449493243422683299840000, 792906081397613340917760000, 1677789268237349829381980160000, 4194473170593374573454950400000000, 12231083765450280256194635366400000000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2006

Keywords

Comments

a(n) appears as coefficient of x^(2*n)/n! in the expansion of 1/sqrt(1-4*x^2). - Wolfdieter Lang, Oct 06 2008

Examples

			a(n)= ((2*n)!/n!)^2 = A001813(n)^2. - _Wolfdieter Lang_, Oct 06 2008
		

Crossrefs

Programs

  • Maple
    Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end;
  • Mathematica
    Array[((2#)!/#!)^2 &, 15, 0] (* Amiram Eldar, Dec 16 2018 *)

Formula

a(n) - 4*(2*n-1)^2*a(n-1) = 0. - R. J. Mathar, Apr 02 2017
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + L_0(1/2)*Pi/4, where L is the modified Struve function.
Sum_{n>=0} (-1)^n/a(n) = 1 - H_0(1/2)*Pi/4, where H is the Struve function. (End)