cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005635 Number of ways of placing n non-attacking bishops on an n X n board so that every square is attacked (or occupied).

Original entry on oeis.org

1, 1, 1, 1, 3, 8, 36, 110, 666, 3250, 23436, 125198, 1037520, 7241272, 66360960, 500827928, 5080370400, 45926666984, 508032504000, 4919789029480, 59256857923200, 656763542278304, 8532986822438400, 100525959568386848, 1405335514253932800, 18431883489984091552
Offset: 0

Views

Author

Keywords

Comments

From Vaclav Kotesovec, Apr 26 2012: (Start)
This sequence gives (according to the article by Robinson) the number of inequivalent solutions.
For the total number of all arrangements of n non-attacking bishops such that every square of the board is controlled by at least one bishop, see A122749.
For the total number of all arrangements of n bishops (in any position) such that every square of the board is controlled by at least one bishop, see A182333.
(End)

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end; # Gives A122749
    unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
    C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; # Gives A122693
    Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end; # Gives A122747
    M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end; # Gives A122748
    a:=n-> if n <= 1 then RETURN(1) else E(n)/8 + C(n)/8 + Q(n)/4 + M(n)/4; fi; # Gives A005635
    # The following additional Maple programs produce A123071, A005631, A123072, A005633, A005632, A005634
    S:=proc(n) local k; if n mod 2 = 0 then RETURN(0) else k:=(n-1)/2; RETURN(B(k)*B(k+1)); fi; end; # Gives A123071
    psi:=n->S(n)/2; # Gives A005631
    zeta:=n->Q(n)/2; # Gives A123072
    mu:=n->(M(n)-S(n))/2; # Gives A005633
    chi:=n->(C(n)-S(n)-Q(n))/4; # Gives A005632
    eps:=n->E(n)/8-C(n)/8+S(n)/4-M(n)/4; # Gives A005634

Extensions

Entry revised by N. J. A. Sloane, Sep 25 2006

A196347 Triangle T(n, k) read by rows, T(n, k) = n!*binomial(n, k).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 144, 96, 24, 120, 600, 1200, 1200, 600, 120, 720, 4320, 10800, 14400, 10800, 4320, 720, 5040, 35280, 105840, 176400, 176400, 105840, 35280, 5040, 40320, 322560, 1128960, 2257920, 2822400, 2257920, 1128960, 322560, 40320
Offset: 0

Views

Author

Philippe Deléham, Oct 28 2011

Keywords

Comments

Unsigned version of A021012.
Equal to A136572*A007318.

Examples

			Triangle begins:
    1;
    1,   1;
    2,   4,    2;
    6,  18,   18,    6;
   24,  96,  144,   96,  24;
  120, 600, 1200, 1200, 600, 120;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Factorial(n)*Binomial(n, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 28 2015
  • Mathematica
    Table[n!*Binomial[n, j], {n, 0, 30}, {j, 0, n}] (* G. C. Greubel, Sep 27 2015 *)
  • Sage
    factorial(n)*binomial(n,k) # Danny Rorabaugh, Sep 27 2015
    

Formula

T(n,k) is given by (1,1,2,2,3,3,4,4,5,5,6,6,...) DELTA (1,1,2,2,3,3,4,4,5,5,6,6, ...) where DELTA is the operator defined in A084938.
Sum_{k>=0} T(m,k)*T(n,k) = (m+n)!.
T(2n,n) = A122747(n).
Sum_{k>=0} T(n,k)^2 = A010050(n) = (2n)!.
Sum_{k>=0} T(n,k)*x^k = A000007(n), A000142(n), A000165(n), A032031(n), A047053(n), A052562(n), A047058(n), A051188(n), A051189(n), A051232(n), A051262(n), A196258(n), A145448(n) for x = -1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
The row polynomials have the form (x + 1) o (x + 2) o ... o (x + n), where o denotes the black diamond multiplication operator of Dukes and White. See example E10 in the Bala link. - Peter Bala, Jan 18 2018

Extensions

Name exchanged with a formula by Peter Luschny, Feb 01 2015

A320958 The exponential limit of arcsin (odd indices only).

Original entry on oeis.org

1, 5, 468, 197325, 233145675, 605979974250, 2987147975582925, 25254853526009732625, 340477692051264295027500, 6926101229658271208893970625, 203562520854789108487169894574375, 8346651541805126492397454664310896250, 463877742240727904202821053051014479795625
Offset: 0

Views

Author

Peter Luschny, Nov 08 2018

Keywords

Comments

See A320956 for definitions and comments.

Examples

			Illustration of the convergence in the sense of A320956:
   [0] 0, 0, 0, 0, 0,   0, 0,      0, 0,         0, ...
   [1] 0, 1, 0, 1, 0,   9, 0,    225, 0,     11025, ... A177145, A001818
   [2] 0, 1, 0, 4, 0, 144, 0,  14400, 0,   2822400, ... A122747
   [3] 0, 1, 0, 5, 0, 369, 0,  82125, 0,  36173025, ...
   [4] 0, 1, 0, 5, 0, 459, 0, 160875, 0, 121837275, ...
   [5] 0, 1, 0, 5, 0, 468, 0, 192375, 0, 198472050, ...
   [6] 0, 1, 0, 5, 0, 468, 0, 197100, 0, 227644200, ...
   [7] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 232737750, ...
   [8] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 233134650, ...
   [9] 0, 1, 0, 5, 0, 468, 0, 197325, 0, 233145675, ...
		

Crossrefs

Cf. A320955 (exp), A320962 (log(x+1)), A320956 (sec+tan), this sequence (arcsin),
A320959 (arctanh).

Programs

  • Maple
    # Function ExpLim defined in A320956.
    L := [ExpLim(28, arcsin)]: seq(L[2*n], n=1..13);
  • Mathematica
    m = 13; CoefficientList[ArcSin[x] + O[x]^(2 m + 1), x]*Range[0, 2 m - 1]!*BellB[Range[0, 2 m - 1]] // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 23 2019 *)

A072477 a(n) = (2*n)!*binomial(2*n,n)/8.

Original entry on oeis.org

18, 1800, 352800, 114307200, 55324684800, 37399486924800, 33659538232320000, 38910426196561920000, 56186655427835412480000, 99113260174701667614720000, 209723658529668728672747520000, 524309146324171821681868800000000, 1528885470681285032024329420800000000
Offset: 2

Views

Author

N. J. A. Sloane, Aug 02 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (2*n)!*Binomial[2*n, n]/8; Array[a, 12, 2] (* Amiram Eldar, Jun 18 2025 *)
  • PARI
    a(n) = (2*n)!*binomial(2*n, n)/8; \\ Amiram Eldar, Jun 18 2025

Formula

From Amiram Eldar, Jun 18 2025: (Start)
Sum_{n>=2} 1/a(n) = 2*Pi*L_0(1/2) - 2, where L is the modified Struve function.
Sum_{n>=2} (-1)^n/a(n) = 2 - 2*Pi*H_0(1/2), where H is the Struve function. (End)

A360602 a(n) = ((2*n + 1)! / n!)^2 / (n + 1).

Original entry on oeis.org

1, 18, 1200, 176400, 45722880, 18441561600, 10685567692800, 8414884558080000, 8646761377013760000, 11237331085567082496000, 18020592759036666839040000, 34953943088278121445457920000, 80662945588334126412595200000000, 218412210097326433146332774400000000
Offset: 0

Views

Author

Peter Luschny, Feb 16 2023

Keywords

Crossrefs

Programs

  • Maple
    a := n -> ((2*n + 1)! / n!)^2 / (n + 1):
    seq(a(n), n = 0..13);
  • Mathematica
    a[n_] := ((2*n + 1)!/n!)^2/(n + 1); Array[a, 14, 0] (* Amiram Eldar, Mar 02 2023 *)

Formula

a(n) = CatalanNumber(n) * (2*n)! * (2*n + 1)^2.
a(n) ~ (4*n/e)^(2*n)*(8*n - 2/3).
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/2 + StruveL(0, 1/2)*Pi/2 + StruveL(1, 1/2)*Pi/4, where StruveL is the modified Struve function.
Sum_{n>=0} (-1)^n/a(n) = 1/2 + StruveH(0, 1/2)*Pi/2 - StruveH(1, 1/2)*Pi/4, where StruveH is the Struve function. (End)
Showing 1-5 of 5 results.