cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122827 Number of independent generators of degree n of the algebra of Free quasi-symmetric functions (or Malvenuto-Reutenauer algebra of permutations) as a dendriform dialgebra (i.e., number of totally primitive elements).

Original entry on oeis.org

1, 0, 1, 6, 39, 284, 2305, 20682, 203651, 2186744, 25463925, 319989030, 4320183527, 62412737460, 961264517369, 15730347890082, 272650924761195, 4991218317261808, 96248879172426557, 1950405560049871134, 41440841509597888495, 921333064567137032620, 21392807067461981820417
Offset: 1

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 23 2006

Keywords

Comments

a(n) = (n-2)*A003319(n-1) for n >= 2 (result of Foissy). For instance 39 = 3 * 13 and 284 = 4 * 71. - F. Chapoton, Apr 26 2023

Programs

  • Mathematica
    terms = 23; f[t_] = 1 + Sum[n! t^n, {n, 1, terms+1}];
    CoefficientList[(f[t]-1)/f[t]^2 + O[t]^(terms+1), t] // Rest (* Jean-François Alcover, Feb 13 2019 *)

Formula

G.f.: (f(t)-1)/f(t)^2, where f(t)=sum(n!*t^n,n>=0)
a(n) ~ n! * (1 - 4/n + 1/n^2 - 3/n^3 - 34/n^4 - 313/n^5 - 3189/n^6 - 36670/n^7 - 471381/n^8 - 6700559/n^9 - 104359132/n^10 - ...). - Vaclav Kotesovec, Feb 13 2019