A122835 Number of topologies on n labeled elements in which no element belongs to any pair of noncomparable members of the topology.
1, 1, 4, 19, 112, 811, 7024, 70939, 818752, 10630891, 153371344, 2433948859, 42137351392, 790287522571, 15962014455664, 345424786466779, 7973482022972032, 195556150543703851, 5078301994885267984
Offset: 0
References
- J. Munkres, Topology, Prentice Hall, (2000), p. 76.
Programs
-
Maple
a122835:=proc(n) option remember; if n=0 then 1 else 2^(n-1) - 1 + add(a122835(n-k)*binomial(n,k),k=1..n); fi; end;
-
Mathematica
a[n_]:=a[n]=2^(n-1)-1+Sum[a[n-k]*Binomial[n,k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,25}] a[ n_] := (3/4) * (PolyLog[ -n, 1/2] + Boole[n==0]) - 1/2 (* Michael Somos, Jan 07 2011 *)
-
PARI
{a(n) = local(A); if( n<1, n==0, A = exp(x + x * O(x^n)) / 2; n! * polcoeff( (3/4) / (1 - A) - A, n))} /* Michael Somos, Jan 07 2011 */
Formula
a(n) = 2^(n-1) - 1 + Sum{C(n,k)*a(n-k), k = 1 ... n}
E.g.f.: (3/4) / (1 - exp(x)/2) - exp(x)/2. - Michael Somos, Jan 07 2011
a(n) = (A000629(n) + 0^n) * (3/4) - 1/2. - Michael Somos, Jan 07 2011
Comments