cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122855 Expansion of (phi(q^3)phi(q^5) + phi(q)phi(q^15))/2 in powers of q where phi(q) is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k>=0} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			1 + q + q^3 + q^4 + q^5 + 2*q^8 + q^9 + q^12 + q^15 + ...
		

Crossrefs

A035175(n) = a(4n).

Programs

  • Mathematica
    a[0] = 1; a[n_] := DivisorSum[n, KroneckerSymbol[-15, #]*(-1)^Boole[Mod[#, 4] == 2]&]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Dec 07 2015, adapted from PARI *)
  • PARI
    {a(n)=if(n<1, n==0, sumdiv(n, d, kronecker(-15,d)*(-1)^(d%4==2)))}
    
  • PARI
    {a(n)= local(A, p, e); if(n<1, n==0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, e-1, if(p<7, 1, if(p%15==2^valuation(p%15,2), e+1, 1-e%2))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2*eta(x^6+A)*eta(x^10+A)*eta(x^30+A)^2/ (eta(x+A)*eta(x^4+A)*eta(x^15+A)*eta(x^60+A)), n))}

Formula

Expansion of (eta(q^2)^2*eta(q^6)eta(q^10)eta(q^30)^2)/ (eta(q)eta(q^4)eta(q^15)eta(q^60)) in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e)=a(5^e)=1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1+(-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Euler transform of period 60 sequence [ 1, -1, 1, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 1, -2, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -4, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1, -2, 1, 0, 2, -1, 1, -1, 1, -2, 1, 0, 1, -2, 1, 0, 1, -1, 1, -2, ...].
Moebius transform is period 60 sequence [ 1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, -1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, -1, -1, 0, 1, 1, 0, -1, 0, 0, -1, -1, 0, 0, -1, 0, -1, -1, 0, -1, 1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, -1, 0, ...].
a(15n+7) = a(15n+11) = a(15n+13) = a(15n+14) = 0.
a(3n) = a(5n) = a(n).
G.f.: 1 + Sum_{k>0} Kronecker(-15,k) x^k/(1-(-x)^k).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - Amiram Eldar, Nov 24 2023