cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122856 Expansion of f(x, x^5)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 0, 2, 4, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 4, 2, 0, 0, 0, 4, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 0, 0, 4, 2, 2, 0, 0, 4, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + 2*x^13 + ...
G.f. = q^2 + 2*q^5 + q^8 + 2*q^17 + 2*q^20 + 2*q^26 + 2*q^29 + q^32 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 2}, Sum[ KroneckerSymbol[ -4, d], {d, Divisors@m}]]]; (* Michael Somos, Nov 14 2011 *)
    QP = QPochhammer; s = (QP[q^2]^2*QP[q^3]*(QP[q^12]/(QP[q]*QP[q^4]*QP[q^6]) ))^2 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3])^2 / (4 x^(2/3)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)])^2 / (2 x^(3/4)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 3*n+2; sumdiv(n, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)))^2, n))};

Formula

Expansion of (chi(x) * psi(-x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)))^2 in powers of q.
Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, ...].
a(4*n + 3) = a(8*n + 4) = 0. a(n) = A002654(3*n + 2) = A035154(3*n + 2) = A113446(3*n + 2). a(2*n) = A122865(n). a(4*n + 1) = 2 * A121444(n). a(4*n + 2) = A122856(n).
a(n) = (-1)^n * A258278(n). Convolution square of A089801.