A122867 Consider the array of sequences defined to be "the least previously nonoccurring positive integer such that partial sum + k is prime" beginning with k=0. This sequence is that array read by successive antidiagonals.
2, 1, 1, 1, 3, 4, 2, 2, 2, 6, 1, 6, 6, 4, 10, 2, 2, 8, 8, 6, 8, 1, 4, 4, 4, 4, 12, 12, 4, 4, 6, 6, 14, 14, 8, 16, 3, 2, 2, 12, 12, 10, 10, 10, 14, 2, 2, 6, 6, 8, 8, 12, 12, 14, 24, 1, 6, 4, 10, 10, 10, 10, 20, 20, 18, 30, 2, 2, 12, 6, 8, 8, 14, 14, 18, 18, 22, 22, 1, 4, 4, 8, 8, 16, 16, 18, 18, 16
Offset: 1
Examples
The array of sequences begins k= 0: 2, 1, 4, 6, 10, 8, 12, 16, 14, 24, 30, 22, 18, 26, 34, ...,. k= 1: 1, 3, 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, ...,. k= 2: 1, 2, 6, 8, 4, 14, 10, 12, 20, 18, 16, 24, 26, 28, 32, ...,. k= 3: 2, 6, 8, 4, 14, 10, 12, 20, 18, 16, 24, 26, 28, 32, 34, ...,. k= 4: 1, 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, 32, ...,. k= 5: 2, 4, 6, 12, 8, 10, 14, 18, 22, 26, 24, 16, 30, 32, 28, ...,.
Programs
-
Mathematica
f[s_] := Append[s, k = 1; p = q + Plus @@ s; While[MemberQ[s, k] || !PrimeQ[p + k], k++ ]; k]; T[n_, k_] := Nest[q = k; f, {}, n][[ -1]]; Table[T[k, n - k], {n, 13}, {k, n}] // Flatten