cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122882 Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.

Original entry on oeis.org

1, 2, 6, 10, 6, 42, 60, 20, 28, 308, 390, 90, 70, 154, 2310, 2652, 468, 252, 308, 924, 17556, 18564, 2652, 1092, 924, 1540, 5852, 134596, 132600, 15912, 5304, 3432, 3960, 8360, 38456, 1038312, 961350, 99450, 27846, 14586, 12870, 18810, 48070
Offset: 0

Views

Author

Michael Somos, Sep 16 2006

Keywords

Comments

T(n,m)=2*A(m,n) in Problem A10527 Solution.

Examples

			       1        6       42      308     2310    17556 ...
       2        6       28      154      924     5852 ...
      10       20       70      308     1540     8360 ...
      60       90      252      924     3960    18810 ...
     390      468     1092     3432    12870    54340 ...
    2652     2652     5304    14586    48620   184756 ...
   18564    15912    27846    68068   204204   705432 ...
  132600    99450   154700   340340   928200  2939300 ...
  961350   640900   897260  1794520  4486300 13113800 ...
 7049900  4229940  5383560  9869860 22776600 61822200 ...
		

Crossrefs

Cf. A004981(n)=T(n, 0), A004982(n)=T(0, n), A001448(n)=T(n, n).

Programs

  • Maple
    A122882 := proc(n,m)
        mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;
        %*2^(n+m)/(n+m)! ;
    end proc: # R. J. Mathar, Sep 24 2021
  • PARI
    {T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}

Formula

T(n,m) = T(n,m-1)*(8*m-2)/(n+m) = T(n-1,m)*(8*n-6)/(n+m). T(0,0) = 1.