A122890 Triangle, read by rows, where the g.f. of row n divided by (1-x)^n yields the g.f. of column n in the triangle A122888, for n>=1.
1, 0, 1, 0, 0, 2, 0, 0, 1, 5, 0, 0, 0, 10, 14, 0, 0, 0, 8, 70, 42, 0, 0, 0, 4, 160, 424, 132, 0, 0, 0, 1, 250, 1978, 2382, 429, 0, 0, 0, 0, 302, 6276, 19508, 12804, 1430, 0, 0, 0, 0, 298, 15674, 106492, 168608, 66946, 4862, 0, 0, 0, 0, 244, 33148, 451948, 1445208, 1337684, 343772, 16796
Offset: 0
Examples
Triangle begins: 1; 0,1; 0,0,2; 0,0,1,5; 0,0,0,10,14; 0,0,0,8,70,42; 0,0,0,4,160,424,132; 0,0,0,1,250,1978,2382,429; 0,0,0,0,302,6276,19508,12804,1430; 0,0,0,0,298,15674,106492,168608,66946,4862; 0,0,0,0,244,33148,451948,1445208,1337684,343772,16796; 0,0,0,0,162,61806,1614906,9459090,16974314,10003422,1744314,58786; 0,0,0,0,84,103932,5090124,51436848,161380816,180308420,71692452,8780912,208012; ... Table A122888 starts: 1; 1, 1; 1, 2, 2, 1; 1, 3, 6, 9, 10, 8, 4, 1; 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1; 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...; 1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...; where row n gives the g.f. of the n-th self-composition of (x+x^2). From _Paul D. Hanna_, Apr 11 2009: (Start) ROW-REVERSAL yields triangle A158830: 1; 1, 0; 2, 0, 0; 5, 1, 0, 0; 14, 10, 0, 0, 0; 42, 70, 8, 0, 0, 0; 132, 424, 160, 4, 0, 0, 0; 429, 2382, 1978, 250, 1, 0, 0, 0; ... where g.f. of row n of A158830 = (1-x)^n*[g.f. of column n of A158825]; g.f. of row n of A158825 = n-th iteration of x*Catalan(x). RELATED ARRAY A158825 begins: 1,1,2,5,14,42,132,429,1430,4862,16796,58786,...; 1,2,6,21,80,322,1348,5814,25674,115566,528528,...; 1,3,12,54,260,1310,6824,36478,199094,1105478,...; 1,4,20,110,640,3870,24084,153306,993978,...; 1,5,30,195,1330,9380,67844,500619,3755156,...; 1,6,42,315,2464,19852,163576,1372196,11682348,...; 1,7,56,476,4200,38052,351792,3305484,31478628,...; 1,8,72,684,6720,67620,693048,7209036,75915708,...; ... which consists of successive iterations of x*Catalan(x). (End)
Links
- Toufik Mansour, Mark Shattuck, Statistics on bargraphs of inversion sequences of permutations, Discrete Math. Lett. (2020) Vol. 4, 42-49.
- Toufik Mansour, Howard Skogman, Rebecca Smith, Passing through a stack k times, arXiv:1704.04288 [math.CO], 2017.
- Susan Field Parker, The Combinatorics of Functional Composition and Inversion, Ph.D. Dissertation, Brandeis Univ. (1993) (Section 2.3.4, p. 27,28.)
Crossrefs
Programs
-
Mathematica
nmax = 11; f[0][x_] := x; f[n_][x_] := f[n][x] = f[n - 1][x + x^2] // Expand; T = Table[ SeriesCoefficient[f[n][x], {x, 0, k}], {n, 0, nmax}, {k, 1, nmax}]; row[n_] := CoefficientList[(1-x)^n*(T[[All, n]].x^Range[0, nmax])+O[x]^nmax, x]; Table[row[n], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Jul 13 2018 *)
Formula
From Paul D. Hanna, Apr 11 2009: (Start)
Comments