A122909 a(n) = F(n+1)*F(2n+2) + F(n)*F(2n).
1, 4, 19, 79, 338, 1427, 6053, 25628, 108583, 459931, 1948354, 8253271, 34961561, 148099316, 627359147, 2657535383, 11257501522, 47687540107, 202007664157, 855718193164, 3624880442591, 15355239954179, 65045840274434
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
Programs
-
Mathematica
Table[Fibonacci[n+1]Fibonacci[2n+2]+Fibonacci[n]Fibonacci[2n],{n,0,30}] (* or *) LinearRecurrence[{3,6,-3,-1},{1,4,19,79},30] (* Harvey P. Dale, Dec 11 2016 *)
Formula
G.f.: (1+x)*(1+x^2) / ( (x^2+4*x-1)*(x^2-x-1) ).
a(n) = (sqrt(5)+2)^n(sqrt(5)/5+3/5)-2^(-n-1)(sqrt(5)-1)^n(sqrt(5)/5+1/5)+ 2^(-n-1)(sqrt(5)+1)^n(sqrt(5)/5-1/5)(-1)^n+(sqrt(5)-2)^n(3/5-sqrt(5)/5)(-1)^n;
Comments