cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A122941 Rectangular table, read by antidiagonals, where the g.f. of row n is Sum_{i>=0} F_i(x)^n / 2^(i+1), where F_0(x)=x, F_{n+1}(x) = F_n(x+x^2), for n>=1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 15, 34, 34, 1, 5, 26, 94, 214, 214, 1, 6, 40, 200, 726, 1652, 1652, 1, 7, 57, 365, 1831, 6645, 15121, 15121, 1, 8, 77, 602, 3865, 19388, 70361, 160110, 160110, 1, 9, 100, 924, 7239, 46481, 233154, 846144, 1925442, 1925442, 1
Offset: 1

Views

Author

Paul D. Hanna, Sep 25 2006

Keywords

Comments

A122940(n)/n = Sum_{m=1..n} (-1)^(m-1)*T(m,n-m+1)/m ; where l.g.f. of A122940, L(x), satisfies: L(x+x^2) = 2*L(x) - log(1+x).

Examples

			Table begins:
1, 1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, 25924260, ...;
1, 2, 7, 34, 214, 1652, 15121, 160110, 1925442, 25924260, ...;
1, 3, 15, 94, 726, 6645, 70361, 846144, 11392530, 169785124, ...;
1, 4, 26, 200, 1831, 19388, 233154, 3139200, 46784118, ...;
1, 5, 40, 365, 3865, 46481, 625820, 9326720, 152426170, ...;
1, 6, 57, 602, 7239, 97470, 1452610, 23739936, 422171622, ...;
1, 7, 77, 924, 12439, 185388, 3029782, 53879148, 1035760670, ...;
1, 8, 100, 1344, 20026, 327296, 5820360, 111889248, 2312153223, ...;
1, 9, 126, 1875, 30636, 544824, 10473576, 216432783, 4784414985, ...;
1, 10, 155, 2530, 44980, 864712, 17868995, 395007850, 9301284465, ...;
Given that A122940 begins:
[1, 1, 4, 17, 106, 796, 7176, 75057, 894100, 11946906, ...],
demonstrate A122940(n)/n = Sum_{m=1..n} (-1)^(m-1)*T(m,n-m+1)/m
at n=4: A122940(4)/4 = 17/4 = 7/1 - 7/2 + 3/3 - 1/4;
at n=5: A122940(5)/5 = 106/5 = 34/1 - 34/2 + 15/3 - 4/4 + 1/5;
at n=6: A122940(6)/6 = 796/6 = 214/1 - 214/2 + 94/3 - 26/4 + 5/5 - 1/6.
		

Crossrefs

Cf. A122940; rows: A122942, A122943, A122944, A122945; related tables: A122888, A122946, A122948, A122951.

Programs

  • PARI
    /* Get T(n,k) from H(n,), the n-th self-composition of x+x^2: */
    {H(n,p)=local(F=x+x^2, G=x+x*O(x^p));if(n==0,G=x,for(i=1,n,G=subst(F,x,G));G)}
    {T(n,k)=round(polcoeff( sum(i=0,6*n+100,H(i,k+n-1)^n/2^(i+1)),k+n-1))}

Formula

T(n,k) = [x^k] Sum_{i>=0} F_i(x)^n / 2^(i+1) where F_0(x)=x, F_{n+1}(x) = F_n(x+x^2); a sum involving n-th powers of self-compositions of x+x^2 (cf. A122888).
Showing 1-1 of 1 results.