A122950 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 7, 8, 0, 0, 0, 0, 4, 15, 13, 0, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 0, 2; 0, 0, 1, 3; 0, 0, 0, 3, 5; 0, 0, 0, 1, 7, 8; 0, 0, 0, 0, 4, 15, 13; 0, 0, 0, 0, 1, 12, 30, 21; 0, 0, 0, 0, 0, 5, 31, 58, 34; 0, 0, 0, 0, 0, 1, 18, 73, 109, 55; 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89; 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144; 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707, 655, 233;
Links
- H. Fuks and J. M. G. Soto, Exponential convergence to equilibrium in cellular automata asymptotically emulating identity, arXiv preprint arXiv:1306.1189 [nlin.CG], 2013.
Crossrefs
Cf. A055830 (another version).
Programs
-
Mathematica
T[0, 0] = T[1, 1] = 1; T[, 0] = T[, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[, ] = 0; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)
Formula
Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{n>=k} T(n,k) = A001333(k).
T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).
T(n,n) = Fibonacci(n+1) = A000045(n+1).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jan 03 2008
G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - Philippe Deléham, Nov 26 2011
Comments