cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122950 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 7, 8, 0, 0, 0, 0, 4, 15, 13, 0, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707
Offset: 0

Views

Author

Philippe Deléham, Oct 25 2006

Keywords

Comments

Skew triangle associated with the Fibonacci numbers.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 3;
  0, 0, 0, 3, 5;
  0, 0, 0, 1, 7, 8;
  0, 0, 0, 0, 4, 15, 13;
  0, 0, 0, 0, 1, 12, 30, 21;
  0, 0, 0, 0, 0,  5, 31, 58,  34;
  0, 0, 0, 0, 0,  1, 18, 73, 109,  55;
  0, 0, 0, 0, 0,  0,  6, 54, 162, 201,  89;
  0, 0, 0, 0, 0,  0,  1, 25, 145, 344, 365, 144;
  0, 0, 0, 0, 0,  0,  0,  7,  85, 361, 707, 655, 233;
		

Crossrefs

Cf. A055830 (another version).

Programs

  • Mathematica
    T[0, 0] = T[1, 1] = 1; T[, 0] = T[, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[, ] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)

Formula

Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{n>=k} T(n,k) = A001333(k).
T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).
T(n,n) = Fibonacci(n+1) = A000045(n+1).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jan 03 2008
G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - Philippe Deléham, Nov 26 2011