A026597
Expansion of (1+x)/(1-x-4*x^2).
Original entry on oeis.org
1, 2, 6, 14, 38, 94, 246, 622, 1606, 4094, 10518, 26894, 68966, 176542, 452406, 1158574, 2968198, 7602494, 19475286, 49885262, 127786406, 327327454, 838473078, 2147782894, 5501675206, 14092806782, 36099507606, 92470734734
Offset: 0
-
[n le 2 select n else Self(n-1) + 4*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 08 2021
-
LinearRecurrence[{1,4},{1,2},40] (* Harvey P. Dale, Nov 28 2011 *)
-
[(2*i)^n*( chebyshev_U(n, -i/4) - (i/2)*chebyshev_U(n-1, -i/4) ) for n in (0..40)] # G. C. Greubel, Dec 08 2021
A006138
a(n) = a(n-1) + 3*a(n-2).
Original entry on oeis.org
1, 2, 5, 11, 26, 59, 137, 314, 725, 1667, 3842, 8843, 20369, 46898, 108005, 248699, 572714, 1318811, 3036953, 6993386, 16104245, 37084403, 85397138, 196650347, 452841761, 1042792802, 2401318085, 5529696491, 12733650746, 29322740219, 67523692457, 155491913114
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- N. T. Gridgeman, A new look at Fibonacci generalization, Fib,. Quart., 11 (1973), 40-55.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (1,3).
-
a:=[1,2];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Nov 19 2019
-
[n le 2 select n else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Sep 15 2016
-
A006138:=-(1+z)/(-1+z+3*z**2); # Simon Plouffe in his 1992 dissertation
-
CoefficientList[Series[(1+z)/(1-z-3*z^2), {z,0,40}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)
Table[(I*Sqrt[3])^(n-1)*(I*Sqrt[3]*ChebyshevU[n, 1/(2*I*Sqrt[3])] + ChebyshevU[n-1, 1/(2*I*Sqrt[3])]), {n, 0, 40}]//Simplify (* G. C. Greubel, Nov 19 2019 *)
LinearRecurrence[{1,3},{1,2},40] (* Harvey P. Dale, May 29 2025 *)
-
main(size)={my(v=vector(size),i);v[1]=1;v[2]=2;for(i=3,size,v[i]=v[i-1]+3*v[i-2]);return(v);} /* Anders Hellström, Jul 17 2015 */
-
def A006138_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+x)/(1-x-3*x^2)).list()
A006138_list(40) # G. C. Greubel, Nov 19 2019
A133558
a(n) = a(n-1) + 9*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 11, 29, 128, 389, 1541, 5042, 18911, 64289, 234488, 813089, 2923481, 10241282, 36552611, 128724149, 457697648, 1616214989, 5735493821, 20281428722, 71900873111, 254433731609, 901541589608, 3191445174089, 11305319480561
Offset: 0
-
a:=[1,2]: for n in [3..510] do a[n]:=a[n-1]+9*a[n-2]; od; a; # Muniru A Asiru, Aug 04 2018
-
a:=n->(<<0|1>,<9|1>>^n. <<1,2>>)[1,1]: seq(a(n),n=0..25); # Muniru A Asiru, Aug 04 2018
-
LinearRecurrence[{1,9},{1,2},30] (* or *) CoefficientList[Series[ (1+x)/(1-x-9x^2),{x,0,30}],x] (* Harvey P. Dale, Apr 21 2011 *)
A133577
a(n) = a(n-1) + 10*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 12, 32, 152, 472, 1992, 6712, 26632, 93752, 360072, 1297592, 4898312, 17874232, 66857352, 245599672, 914173192, 3370169912, 12511901832, 46213600952, 171332619272, 633468628792, 2346794821512, 8681481109432
Offset: 0
-
LinearRecurrence[{1, 10}, {1, 2}, 24] (* or *)
CoefficientList[Series[(1 + x)/(1 - x - 10 x^2), {x, 0, 23}], x] (* Michael De Vlieger, Jul 20 2017 *)
A133592
a(n) = 2*a(n-1)+6*a(n-2) for n>=3, a(0)=1, a(1)=2, a(2)=8.
Original entry on oeis.org
1, 2, 8, 28, 104, 376, 1376, 5008, 18272, 66592, 242816, 885184, 3227264, 11765632, 42894848, 156383488, 570136064, 2078573056, 7577962496, 27627363328, 100722501632, 367209183232, 1338753376256, 4880761851904, 17794043961344
Offset: 0
-
A133592 := proc(n)
option remember;
if n <=1 then
n+1;
elif n = 2 then
8;
else
2*procname(n-1)+6*procname(n-2) ;
fi ;
end proc: # R. J. Mathar, Jul 15 2017
-
Join[{1}, LinearRecurrence[{2, 6}, {2, 8}, 24]] (* Jean-François Alcover, Jul 01 2023 *)
A133407
a(n) = a(n-1) + 5*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 7, 17, 52, 137, 397, 1082, 3067, 8477, 23812, 66197, 185257, 516242, 1442527, 4023737, 11236372, 31355057, 87536917, 244312202, 681996787, 1903557797, 5313541732, 14831330717, 41399039377, 115555692962, 322550889847, 900329354657, 2513083803892
Offset: 0
Cf.
A030195 (shifted binomial transform).
-
a:= n-> (<<0|1>, <5|1>>^n. <<1, 2>>)[1,1]:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 20 2025
-
LinearRecurrence[{1,5},{1,2},30] (* Harvey P. Dale, Jul 23 2013 *)
-
x='x+O('x^99); Vec((1+x)/(1-x-5*x^2)) \\ Altug Alkan, Aug 28 2017
A133467
a(n) = a(n-1) + 6*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 8, 20, 68, 188, 596, 1724, 5300, 15644, 47444, 141308, 425972, 1273820, 3829652, 11472572, 34450484, 103285916, 309988820, 929704316, 2789637236, 8367863132, 25105686548, 75312865340, 225946984628, 677824176668, 2033506084436, 6100451144444, 18301487651060
Offset: 0
a(2)=8 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3. - _Sean A. Irvine_, Jun 07 2025
-
Digits := 50:
for n from 0 to 40 do round(.8*3^n+.2*(-2)^n) end do;
# Matt C. Anderson, Jul 18 2017
-
LinearRecurrence[{1,6},{1,2},30] (* Harvey P. Dale, Apr 05 2014 *)
-
from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,1,6, lambda n: 0); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 03 2008
A133469
a(n) = a(n-1) + 7*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 9, 23, 86, 247, 849, 2578, 8521, 26567, 86214, 272183, 875681, 2780962, 8910729, 28377463, 90752566, 289394807, 924662769, 2950426418, 9423065801, 30076050727, 96037511334, 306569866423, 978832445761, 3124821510722
Offset: 0
-
f:= gfun:-rectoproc({a(n) = a(n-1) + 7*a(n-2), a(0)=1, a(1)=2}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jul 23 2017
-
LinearRecurrence[{1,7},{1,2},30] (* Harvey P. Dale, Dec 09 2013 *)
-
x='x+O('x^99); Vec((1+x)/(1-x-7*x^2)) \\ Altug Alkan, Jul 23 2017
A133479
a(n) = a(n-1) + 8*a(n-2) for n >= 2, a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 10, 26, 106, 314, 1162, 3674, 12970, 42362, 146122, 485018, 1653994, 5534138, 18766090, 63039194, 213167914, 717481466, 2422824778, 8162676506, 27545274730, 92846686778, 313208884618, 1055982378842, 3561653455786
Offset: 0
A133646
a(n)=5*a(n-1)+30*a(n-2) for n>=3, a(0)=1, a(1)=5, a(2)=50 .
Original entry on oeis.org
1, 5, 50, 400, 3500, 29500, 252500, 2147500, 18312500, 155987500, 1329312500, 11326187500, 96510312500, 822337187500, 7006995312500, 59705092187500, 508735320312500, 4334829367187500, 36936206445312500, 314725913242187500
Offset: 0
Showing 1-10 of 19 results.
Comments