cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122950 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 7, 8, 0, 0, 0, 0, 4, 15, 13, 0, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707
Offset: 0

Views

Author

Philippe Deléham, Oct 25 2006

Keywords

Comments

Skew triangle associated with the Fibonacci numbers.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 3;
  0, 0, 0, 3, 5;
  0, 0, 0, 1, 7, 8;
  0, 0, 0, 0, 4, 15, 13;
  0, 0, 0, 0, 1, 12, 30, 21;
  0, 0, 0, 0, 0,  5, 31, 58,  34;
  0, 0, 0, 0, 0,  1, 18, 73, 109,  55;
  0, 0, 0, 0, 0,  0,  6, 54, 162, 201,  89;
  0, 0, 0, 0, 0,  0,  1, 25, 145, 344, 365, 144;
  0, 0, 0, 0, 0,  0,  0,  7,  85, 361, 707, 655, 233;
		

Crossrefs

Cf. A055830 (another version).

Programs

  • Mathematica
    T[0, 0] = T[1, 1] = 1; T[, 0] = T[, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[, ] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)

Formula

Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{n>=k} T(n,k) = A001333(k).
T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).
T(n,n) = Fibonacci(n+1) = A000045(n+1).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jan 03 2008
G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - Philippe Deléham, Nov 26 2011

A384711 Expansion of (1+x) / (1-2*x-6*x^2).

Original entry on oeis.org

1, 3, 12, 42, 156, 564, 2064, 7512, 27408, 99888, 364224, 1327776, 4840896, 17648448, 64342272, 234575232, 855204096, 3117859584, 11366943744, 41441044992, 151083752448, 550813774848, 2008130064384, 7321142777856, 26691065942016, 97308988551168
Offset: 0

Views

Author

Sean A. Irvine, Jun 07 2025

Keywords

Comments

Number of walks of length n in the graph K_{1,1,1,2} starting at vertex 0 when the edges are given by {{0,1}, {0,3}, {0,4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.
Also, by symmetry, the number of walks of length n starting at vertex 2 in the same graph.

Examples

			a(2)=12 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-3-0, 0-3-1, 0-3-2, 0-3-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3.
		

Crossrefs

Cf. A133592, A384712 (vertices 1, 3, 4).

Programs

  • Maple
    a:= n-> (<<0|1|0|1|1>, <1|0|1|1|1>, <0|1|0|1|1>, <1|1|1|0|1>, <1|1|1|1|0>>^n. <<1, 1, 1, 1, 1>>)[1, 1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+x) / (1-2*x-6*x^2), {x, 0, 32}], x]

Formula

a(n) = 3*A133592(n)/2 for n>0.

A384712 Expansion of (1+2*x) / (1-2*x-6*x^2).

Original entry on oeis.org

1, 4, 14, 52, 188, 688, 2504, 9136, 33296, 121408, 442592, 1613632, 5882816, 21447424, 78191744, 285068032, 1039286528, 3788981248, 13813681664, 50361250816, 183604591616, 669376688128, 2440380925952, 8897021980672, 32436329517056, 118254790918144
Offset: 0

Views

Author

Sean A. Irvine, Jun 07 2025

Keywords

Comments

Number of walks of length n in the graph K_{1,1,1,2} starting at vertex 1 when the edges are given by {{0,1}, {0,3}, {0,4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.
Also, by symmetry, the number of walks of length n starting at vertex 3 (or 4) in the same graph.

Examples

			a(2)=14 because we have the walks 1-0-1, 1-0-3, 1-0-4, 1-2-1, 1-2-3, 1-2-4, 1-3-0, 1-3-1, 1-3-2, 1-3-4, 1-4-0, 1-4-1, 1-4-2, 1-4-3.
		

Crossrefs

Cf. A133592, A384711 (vertices 0, 2).

Programs

  • Maple
    a:= n-> (<<0|1|0|1|1>, <1|0|1|1|1>, <0|1|0|1|1>, <1|1|1|0|1>, <1|1|1|1|0>>^n. <<1, 1, 1, 1, 1>>)[2, 1]:
    seq(a(n), n=0..32);
  • Mathematica
    CoefficientList[Series[(1+2*x) / (1-2*x-6*x^2), {x, 0, 32}], x]

Formula

a(n) = A133592(n+1)/2.
Showing 1-3 of 3 results.