cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A122950 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 3, 5, 0, 0, 0, 1, 7, 8, 0, 0, 0, 0, 4, 15, 13, 0, 0, 0, 0, 1, 12, 30, 21, 0, 0, 0, 0, 0, 5, 31, 58, 34, 0, 0, 0, 0, 0, 1, 18, 73, 109, 55, 0, 0, 0, 0, 0, 0, 6, 54, 162, 201, 89, 0, 0, 0, 0, 0, 0, 1, 25, 145, 344, 365, 144, 0, 0, 0, 0, 0, 0, 0, 7, 85, 361, 707
Offset: 0

Views

Author

Philippe Deléham, Oct 25 2006

Keywords

Comments

Skew triangle associated with the Fibonacci numbers.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 3;
  0, 0, 0, 3, 5;
  0, 0, 0, 1, 7, 8;
  0, 0, 0, 0, 4, 15, 13;
  0, 0, 0, 0, 1, 12, 30, 21;
  0, 0, 0, 0, 0,  5, 31, 58,  34;
  0, 0, 0, 0, 0,  1, 18, 73, 109,  55;
  0, 0, 0, 0, 0,  0,  6, 54, 162, 201,  89;
  0, 0, 0, 0, 0,  0,  1, 25, 145, 344, 365, 144;
  0, 0, 0, 0, 0,  0,  0,  7,  85, 361, 707, 655, 233;
		

Crossrefs

Cf. A055830 (another version).

Programs

  • Mathematica
    T[0, 0] = T[1, 1] = 1; T[, 0] = T[, 1] = 0; T[n_, n_] := Fibonacci[n+1]; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + T[n-2, k-1] + T[n-2, k-2]; T[, ] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)

Formula

Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{n>=k} T(n,k) = A001333(k).
T(n,k) = 0 if k < 0 or if k > n, T(0,0) = 1, T(2,1) = 0, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-2,k-2).
T(n,n) = Fibonacci(n+1) = A000045(n+1).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A133592(n), A133594(n), A133642(n), A133646(n), A133678(n), A133679(n), A133680(n), A133681(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Jan 03 2008
G.f.: (1-y*x^2)/(1-y*x-y*(y+1)*x^2). - Philippe Deléham, Nov 26 2011

A133647 A133566 * A000244.

Original entry on oeis.org

1, 3, 12, 27, 108, 243, 972, 2187, 8748, 19683, 78732, 177147, 708588, 1594323, 6377292, 14348907, 57395628, 129140163, 516560652, 1162261467, 4649045868, 10460353203, 41841412812, 94143178827, 376572715308, 847288609443, 3389154437772, 7625597484987, 30502389939948
Offset: 0

Views

Author

Gary W. Adamson, Sep 19 2007

Keywords

Comments

A133646 is a companion case.

Examples

			a(3) = 27 = 3^3.
a(4) = 108 = 4 * 3^3.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Flatten[NestList[9#&,{3,12},20]]] (* or *) LinearRecurrence[{0,9},{1,3,12},40] (* Harvey P. Dale, Aug 01 2019 *)

Formula

A133566 * A000244, where A133566 = an infinite lower triangular matrix and A000244 = [3^0, 3^1, 3^2, ...]. For odd n, a(n) = 3^n. For even n, a(n) = 4 * 3^(n-1).
From Philippe Deléham, Apr 06 2012: (Start)
G.f.: (1+3*x+3*x^2)/(1-9*x^2).
a(n+2) = 9*a(n), a(0) = 1, a(1) = 3, a(2) = 12. (End)
From Amiram Eldar, Jun 02 2025: (Start)
Sum_{n>=0} 1/a(n) = 47/32.
Sum_{n>=0} (-1)^n/a(n) = 23/32. (End)

Extensions

More terms from Philippe Deléham, Apr 06 2012
Showing 1-2 of 2 results.