A122951 Number of walks from (0,0) to (n,n) in the region x >= y with the steps (1,0), (0,1), (2,0) and (0,2).
1, 1, 5, 22, 117, 654, 3843, 23323, 145172, 921508, 5942737, 38825546, 256431172, 1709356836, 11485249995, 77703736926, 528893901963, 3619228605738, 24884558358426, 171828674445330, 1191050708958096, 8284698825305832
Offset: 0
Examples
a(2) = 5 because we can reach (2,2) in the following ways: (0,0),(1,0),(1,1),(2,1),(2,2) (0,0),(2,0),(2,2) (0,0),(1,0),(2,0),(2,2) (0,0),(2,0),(2,1),(2,2) (0,0),(1,0),(2,0),(2,1),(2,2).
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
- Arvind Ayyer and Doron Zeilberger, The Number of [Old-Time] Basketball games with Final Score n:n where the Home Team was never losing but also never ahead by more than w Points, arXiv:math/0610734 [math.CO], 2006-2007.
Programs
-
Maple
N:= 100: # to get a[0] to a[N] S:= series(RootOf(z^4*F^4-2*z^3*F^3-z^2*F^3+2*z^2*F^2+3*z*F^2-2*z*F-F+1,F), z, N+1): seq(coeff(S,z,j),j=0..N); # Robert Israel, Feb 18 2013
-
Mathematica
f[x_] = (2x+Sqrt[4(x-2)x+1] - Sqrt[2]Sqrt[2x(-2x + Sqrt[4(x-2)x+1]-1) + Sqrt[4(x-2)x+1]+1]+1)/(4x^2); CoefficientList[Series[f[x],{x,0,21}],x] (* Jean-François Alcover, May 19 2011, after g.f. *)
Formula
In Maple, GF is given by solve(z^4*F^4 -2*z^3*F^3 -z^2*F^3 +2*z^2*F^2 +3*z*F^2 -2*z*F-F+1, F);
Comments