cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arvind Ayyer

Arvind Ayyer's wiki page.

Arvind Ayyer has authored 13 sequences. Here are the ten most recent ones:

A373625 Sum of all entries in character table of the hyperoctahedral group B_n.

Original entry on oeis.org

1, 2, 8, 26, 112, 410, 1860, 8074, 40376, 199050, 1085232, 5923394, 34842408, 206403234, 1295653484, 8219293954, 54613967584, 367414298386, 2567777927672, 18187100499306, 133016727225888, 986352813933034, 7518613974827732, 58110359176236314, 460095738657984024
Offset: 0

Author

Arvind Ayyer, Jun 11 2024

Keywords

Examples

			a(2) = 8 because the character table of B_2 is  [[1  1  1  1  1], [ 1 -1 -1  1  1], [ 1 -1  1 -1  1], [ 1  1 -1 -1  1], [ 2  0  0  0 -2]].
		

Crossrefs

Programs

  • PARI
    \\ here B(k,n) is o.g.f. of column k of A376826.
    B(k,n)={serlaplace(exp(2*x + k*x^2/2 + O(x*x^n)))}
    seq(n)={my(d=serlaplace(1/sqrt(1 - 2*x + O(x*x^(n\2))))); Vec(prod(i=1, (n+1)\2, subst(d + O(x^(n\(2*i)+1)), x, 2*i*x^(2*i))^(2-i%2) * subst(B(4*i-2, n\(2*i-1)), x, x^(2*i-1))))} \\ Andrew Howroyd, Oct 07 2024

Formula

G.f.: Product_{i >= 1} D(4*i*x^(4*i)) * D(2*i*x^(2*i)) * R(2*i-1, x^(2*i-1)), where D(x) is the g.f. of A001147, R(r, x) = Sum_{k>=0} c(r,k)*x^k and c(r,n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * 2^(n-k) * (2*k-1)!! * r^k. [edited by Andrew Howroyd, Oct 07 2024]
G.f.: Product_{i >= 1} D(4*i*x^(4*i)) * D(2*i*x^(2*i)) * B(4*i-2, x^(2*i-1)), where D(x) is the g.f. of A001147 and B(k,x) is the g.f. of column k of A376826. - Andrew Howroyd, Oct 07 2024

Extensions

a(0)=1 prepended and a(10) onwards from Andrew Howroyd, Oct 06 2024

A181119 Number of transpose-complementary plane partitions of n.

Original entry on oeis.org

1, 2, 84, 81796, 1844536720, 962310111888300, 11608208114358751650000, 3236574482779383546336417240000, 20853456581643133066208521560263633137920, 3104385823530881109001458753652585998600603921849920, 10676554307318599842868990948461304923921623250562199975300214736
Offset: 0

Author

Arvind Ayyer, Jan 21 2011

Keywords

Comments

The complement of a plane partition inside an m X m X m cube consists of the boxes which are within the cube, but not in the plane partition, rotated in an appropriate way.
a(n) is the number of plane partitions inside an 2n X 2n X 2n cube whose (matrix) transpose when written as an 2n X 2n array is the same as its complement.

Examples

			When n=2, there are two transpose-complementary plane partitions,
[1 1] and [2 1], both of whose transpose and complement is equal to themselves.
[1 1]     [1 0]
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3n-1,n]Product[(2n+i+j+1)/(i+j+1),{i,1,2n-2}, {j,i,2n-2}], {n,0,10}] (* Harvey P. Dale, Jan 27 2012 *)
  • PARI
    a(n) = binomial(3*n-1,n)*prod(i=1,2*n-2,prod(j=i,2*n-2,(2*n+i+j+1)/(i+j+1))); \\ Michel Marcus, Jun 18 2015

Formula

a(n) = binomial(3n-1,n)*Product(i=1..2n-2,Product(j=i..2n-2,(2n+i+j+1)/(i+j+1))).
a(n) ~ exp(1/24) * 3^(9*n^2 - 3*n/2 - 1/24) / (sqrt(A) * n^(1/24) * 2^(12*n^2 - n - 1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Feb 28 2015

A180512 Triangle of the number of alternating sign matrices according to the number of -1's.

Original entry on oeis.org

1, 2, 6, 1, 24, 16, 2, 120, 200, 94, 14, 1, 720, 2400, 2684, 1284, 310, 36, 2, 5040, 29400, 63308, 66158, 38390, 13037, 2660, 328, 26, 1
Offset: 1

Author

Arvind Ayyer, Jan 20 2011

Keywords

Comments

The first column is the factorial, A000142.
The second column forms coefficients of Laguerre polynomials, A001810.
From Arvind Ayyer, Mar 15 2018: (Start)
Consider the row generating function A_n(x) = sum_k a(n,k) x^k. Then
A_n(0) = n!, A000142.
A_n(1) = number of ASM's, A005130.
A_n(2) = number of domino tilings of the Aztec diamond, A006125.
A_n(3) = 3-enumeration of n X n alternating-sign matrices, A059477. (End)

Examples

			In triangular format, the numbers of ASMs is as follows:
n=1:1
n=2:2
n=3:6,1
n=4:24,16,2
n=5:120,200,94,14,1
n=6:720,2400,2684,1284,310,36,2
n=7:5040,29400,63308,66158,38390,13037,2660,328,26,1
		

Crossrefs

Row sums are A005130

Extensions

T(7, 7) corrected by Arvind Ayyer, Feb 12 2018

A180349 Gog words avoiding the subpattern 312.

Original entry on oeis.org

1, 2, 6, 26, 162, 1450, 18626, 343210, 9069306, 343611106, 18662952122, 1453016097506, 162144482866166, 25932885879826066
Offset: 1

Author

Arvind Ayyer, Jan 18 2011

Keywords

Comments

Gog words of size n are words of length n in an alphabet of odd-sized tuples of increasing integers that satisfy the following conditions:
(1) The length of the word is n,
(2) each letter in the word has maximum entry at most n,
(3) an integer in an even-numbered position in a tuple is repeated in another tuple to its left and to its right in odd-numbered positions,
(4) every repeated integer alternates in odd- and even-numbered positions in subsequent tuples.
They are in natural bijection with alternating sign matrices.
Further, the integers c, a, b form a 312-subpattern of the Gog word w = x_1 x_2 ... x_n if the following conditions hold:
(1) c, a, b appear in odd positions in x_i, x_j, x_k, respectively, where i < j < k,
(2) b is not in an even position in x_(i+1), ..., x_(k-1),
(3) if x_j = (p_1, q_1, ..., p_(k-1), q_(k-1), p_k), either b > p_k or p_l < b < q_l for some l.
(4) a < b < c.
a(n) is equal to the number of gapless Gog triangles of size n, and also to the number of gapless Magog triangles of size n. - Ludovic Schwob, May 18 2024

Examples

			For n=3, there are 7 Gog words: (1)(2)(3), (1)(3)(2), (2)(1)(3), (2)(3)(1), (3)(1)(2), (3)(2)(1) and (2)(123)(2). Of these, all but (3)(1)(2) avoid the subpattern 312.
More complicated examples: 31(234)3 and 25(12356)542 contain the subpattern 312 but 25(12456)532 does not.
		

Crossrefs

Extensions

a(13)-a(14) from Ludovic Schwob, May 18 2024

A157513 Triangle of numbers of walks in the quarter-plane, of length 2n beginning and ending at the origin using steps {(1,1), (1,0), (-1,0), (-1,-1)} (Gessel steps) arranged according to the number of times the steps (1,1) and (-1,-1) occur.

Original entry on oeis.org

1, 1, 1, 2, 7, 2, 5, 37, 38, 5, 14, 177, 390, 187, 14, 42, 806, 3065, 3175, 874, 42, 132, 3566, 20742, 37260, 22254, 3958, 132, 429, 15485, 127575, 351821, 365433, 141442, 17548, 429, 1430, 66373, 734332, 2876886, 4597444, 3100670, 839068, 76627, 1430
Offset: 0

Author

Arvind Ayyer, Mar 02 2009

Keywords

Comments

The first and the last terms in each row are Catalan numbers. The sum in each row gives the Gessel sequence.

Examples

			For n=2, there are 2 walks of length 4 where the diagonal steps (1,1) and (-1,-1) occur zero times [(1,0),(1,0),(-1,0),(-1,0)] and [(1,0),(-1,0),(1,0),(-1,0)];
7 walks where the diagonal steps occur once [(1,0),(-1,0),(1,1),(-1,-1)], [(1,1),(-1,-1),(1,0),(-1,0)],  [(1,0),(1,1),(-1,0),(-1,-1)],  [(1,0),(1,1),(-1,-1),(-1,0)],  [(1,1),(1,0),(-1,0),(-1,-1)],  [(1,1),(1,0),(-1,-1),(-1,0)],  [(1,1),(-1,0),(1,0),(-1,-1)];
and finally 2 walks where the diagonal steps occur twice [(1,1),(1,1),(-1,-1),(-1,-1)] and [(1,1),(-1,-1),(1,1),(-1,-1)].
Triangle begins:
1;
1,     1;
2,     7,    2;
5,    37,   38,    5;
14,  177,  390,  187,   14;
42,  806, 3065, 3175,  874,  42;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, t, x, y) option remember; `if` (min(n, x, y, k, t, n-x)<0, 0, `if` (n=0, `if` (max(n, k, t)=0, 1, 0), b(n-1, k-1, t, x+1, y+1) +b(n-1, k, t, x+1, y) +b(n-1, k, t, x-1, y) +b(n-1, k, t-1, x-1, y-1))) end: T:= (n,k)-> b(2*n, k, k, 0, 0):
    seq (seq (T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Jul 04 2011
  • Mathematica
    b[n_, k_, t_, x_, y_] := b[n, k, t, x, y] = If[Min[n, x, y, k, t, n-x] < 0, 0, If[n == 0, If[Max[n, k, t] == 0, 1, 0], b[n-1, k-1, t, x+1, y+1] + b[n - 1, k, t, x+1, y] + b[n-1, k, t, x-1, y] + b[n-1, k, t-1, x-1, y-1]]]; T[n_, k_] := b[2*n, k, k, 0, 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

A135452 Number of different multisets of differences between ends of n non-intersecting chords joining 2n labeled points around a circle.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 33, 71, 117, 242, 421, 877, 1468
Offset: 1

Author

Arvind Ayyer, Dec 14 2007, definition corrected Jan 04 2007, Jan 07 2007

Keywords

Comments

Represent a set of chords as a collection of pairs of integers. For example, if n=3, one possible connectivity is {{1,4},{2,3},{5,6}}.
Define the D-set of a connectivity to be the multiset of differences between connected pairs. In the above example the D-set is {1,1,3}. Since the numbers are on a circle, we can take two possible differences. We take the smaller of the two. Hence the maximal difference can be at most n or n-1 depending on whether n is odd or even. Is another example: the D-set of {{1,6},{2,3},{4,5}} is {1,1,1}.
Then the sequence gives the number of distinct D-sets of all possible connectivities.
While it is true that if two connectivities have different D-sets they are inequivalent, the converse is not true. consider n=6: Both {{4, 5}, {6, 11}, {2, 3}, {8, 9}, {7, 10}, {1, 12}} and {{4, 5}, {1, 6}, {2, 3}, {8, 9}, {7, 10}, {11, 12}} have the same D-set, namely {1,1,1,1,3,5} but they are inequivalent.

Crossrefs

A133107 Number of Ferrers diagrams with a single strictly smaller Ferrers puncture with the same orientation removed from the top with half-perimeter = n.

Original entry on oeis.org

1, 7, 32, 121, 410, 1294, 3888, 11273, 31826, 88041, 239734, 644758, 1717191, 4538129, 11919760, 31156313, 81125827, 210604604, 545462798, 1410226551, 3641097828, 9391872711, 24208902420, 62373915102, 160663604377
Offset: 6

Author

Arvind Ayyer, Sep 11 2007

Keywords

Examples

			The sequence starts with n=6 because the smallest such object whose illustration is below has a perimeter of 12. (1 denotes cell inside the Ferrers diagram.)
1 1
111
		

Crossrefs

Formula

G.f.: x^2*(-1 + 3*x - x^2 + (5*x^4 - 6*x^3 + 11*x^2 - 6*x + 1 + 4*x^6 - 12*x^5)^(1/2))/(2*(x^2 - 3*x + 1)*(1-2*x)^2)

A133106 Number of Ferrers diagrams with a single Ferrers puncture with the same orientation inscribed strictly inside with half-perimeter = n.

Original entry on oeis.org

1, 8, 41, 168, 602, 1968, 6021, 17512, 48950, 132496, 349258, 900368, 2277556, 5667936, 13906221, 33695208, 80746846, 191601872, 450642654, 1051472048, 2435679852, 5605044640, 12820922530, 29164511376, 66004709148, 148678206880
Offset: 8

Author

Arvind Ayyer, Sep 11 2007

Keywords

Examples

			The sequence starts with n=8 because the smallest such object whose cartoon is below has a perimeter of 16. (1 denotes cell outside the puncture and 2 denotes cell inside the puncture).
111
121
111
		

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[(1-(1-4x^2)^(1/2))x^6/(2(2x-1)^4),{x,0,40}],x],8] (* Harvey P. Dale, Sep 21 2024 *)

Formula

a(n) = [(2*n^2-16*n+6)*a(n-1)+(4*n^2-68*n+240)*a(n-2)-(8*n^2-88*n+240)*a(n-3)]/(n^2-14*n+48) with a(6)=0, a(7)=0, a(8)=1.
G.f.: (1-(1-4*x^2)^(1/2))*x^6/(2*(2*x-1)^4).

A127618 Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 4 with the steps (1,0), (0, 1), (2,0) and (0,2).

Original entry on oeis.org

1, 1, 5, 22, 117, 590, 3018, 15378, 78440, 399992, 2039852, 10402480, 53049048, 270531368, 1379614800, 7035549312, 35878823312, 182969359520, 933079279328, 4758375627808, 24266039468160, 123748253080832, 631072497876672
Offset: 0

Author

Arvind Ayyer, Jan 20 2007

Keywords

Examples

			a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
		

Programs

  • Mathematica
    Join[{1, 1}, LinearRecurrence[{4, 6, -2}, {5, 22, 117}, 21]] (* Jean-François Alcover, Dec 10 2018 *)
    b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n-k <= 4];
    T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Apr 03 2019 *)

Formula

G.f.: (1-3x-5x^2-2x^3+x^4)/(1-4x-6x^2+2x^3).

A127619 Number of walks from (0,0) to (n,n) in the region 0 <= x-y <= 5 with the steps (1,0), (0, 1), (2,0) and (0,2).

Original entry on oeis.org

1, 1, 5, 22, 117, 654, 3674, 20763, 117349, 663529, 3751874, 21215245, 119963514, 678345474, 3835772387, 21689760681, 122646936325, 693519457822, 3921575652821, 22174944672838, 125390459051898, 709032985366923
Offset: 0

Author

Arvind Ayyer, Jan 20 2007

Keywords

Examples

			a(2)=5 because we can reach (2,2) in the following ways:
(0,0),(1,0),(1,1),(2,1),(2,2)
(0,0),(2,0),(2,2)
(0,0),(1,0),(2,0),(2,2)
(0,0),(2,0),(2,1),(2,2)
(0,0),(1,0),(2,0),(2,1),(2,2)
		

Programs

  • Mathematica
    LinearRecurrence[{5, 6, -11, -12, 4}, {1, 1, 5, 22, 117}, 22] (* Jean-François Alcover, Dec 10 2018 *)
    b[n_, k_] := Boole[n >= 0 && k >= 0 && 0 <= n - k <= 5];
    T[0, 0] = T[1, 1] = 1; T[n_, k_] /; b[n, k] == 1 := T[n, k] = b[n-2, k]* T[n-2, k] + b[n-1, k]*T[n-1, k] + b[n, k-2]*T[n, k-2] + b[n, k-1]*T[n, k-1]; T[, ] = 0;
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Apr 03 2019 *)

Formula

G.f.: (1-4x-6x^2+2x^3)/(1-5x-6x^2+11x^3+12x^4-4x^5). [Typo corrected by Jean-François Alcover, Dec 10 2018]