cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122960 Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 1, 0, 6, 1, 0, 0, 5, 0, 10, 1, 0, 1, 0, 15, 0, 15, 1, 0, 0, 7, 0, 35, 0, 21, 1, 0, 1, 0, 28, 0, 70, 0, 28, 1, 0, 0, 9, 0, 84, 0, 126, 0, 36, 1, 0, 1, 0, 45, 0, 210, 0, 210, 0, 45, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 26 2006

Keywords

Comments

T(n,k) = binomial (n,n-k+1) if (n-k) is an odd number (see A000217, A000332, A000579, A000581, ...). T(n,k)= 0 if (n-k)=2x with x > 0 (see A000004). T(n,n)=1 (see A000012).

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 0, 3,  1;
  0, 1, 0,  6,  1;
  0, 0, 5,  0, 10,   1;
  0, 1, 0, 15,  0,  15,   1;
  0, 0, 7,  0, 35,   0,  21,   1;
  0, 1, 0, 28,  0,  70,   0,  28,  1;
  0, 0, 9,  0, 84,   0, 126,   0, 36,  1;
  0, 1, 0, 45,  0, 210,   0, 210,  0, 45, 1;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=n then 1
        elif n=2 and k=1 then 1
        elif k=0 then 0
        else 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1-2*x*y-x^2+x^2*y^2+
    x^2*y)/(1-3*x*y-x^2+3*x^2*y^2+x^3*y-x^3*y^3), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n, k) = if(k<0 || k>n, 0, if(k==n, 1, if(n==2 && k==1, 1, if(k==0, 0, 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3) )))); \\ G. C. Greubel, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (n==2 and k==1): return 1
        elif (k==0): return 0
        else: return 3*T(n-1, k-1) + T(n-2, k) - 3*T(n-2, k-2) - T(n-3, k-1) + T(n-3, k-3)
    print([[T(n, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Feb 17 2020

Formula

Sum_{k=0..n} T(n,k) = A011782(n).
Sum_{k=0..n} 2^k*T(n,k) = A083323(n).
Sum_{k=0..n} 2^(n-k)*T(n,k) = A122983(n).
G.f.: (1 - 2*x*y - x^2 + x^2*y^2 + x^2*y)/(1 - 3*x*y - x^2 + 3*x^2*y^2 + x^3*y - x^3*y^3). - Philippe Deléham, Nov 09 2013
T(n,k) = 3*T(n-1,k-1) + T(n-2,k) - 3*T(n-2,k-2) - T(n-3,k-1) + T(n-3,k-3), T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 09 2013

Extensions

a(12) corrected by Georg Fischer, Feb 17 2020