cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A123041 Numbers m such that UnitarySigma(m)^2 = k*Sigma(m)*UnitaryPhi(m), for some integer k.

Original entry on oeis.org

1, 2, 3, 6, 14, 15, 30, 35, 42, 70, 78, 105, 190, 210, 357, 418, 570, 714, 910, 1045, 1254, 1976, 2090, 2730, 3135, 4522, 4674, 5278, 5412, 5928, 6270, 8580, 10659, 12441, 12628, 13566, 14630, 15834, 16770, 17220, 20026, 21318, 23374, 24871, 24882
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 24 2006

Keywords

Comments

Terms which are squarefree appear on A121556.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*(p^e + 1)^2/((p^e - 1)*(p^(e + 1) - 1)); q[1] = True; q[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[25000], q] (* Amiram Eldar, Sep 12 2022 *)
  • PARI
    A047994(n)={ local(i,resul,rmax); if(n==1, return(1) ); i=factor(n); rmax=matsize(i)[1]; resul=1; for(r=1,rmax, resul *= i[r,1]^i[r,2]-1; ); return(resul); }
    A034448(n)={ sumdiv(n, d, if(gcd(d, n/d)==1, d)) }
    isA123041(n)={ local(s); s=(A034448(n))^2; if( s % (sigma(n)*A047994(n)) == 0, return(s/sigma(n)/A047994(n)), return(0) ); }
    { for(n=1,30000, k=isA123041(n); if( k, print1(n,",") ); ); } \\ R. J. Mathar, Sep 27 2006
    
  • PARI
    is(n) = {my(f=factor(n), p=f[,1], e=f[,2]); denominator(prod(i=1, #p, (p[i] - 1)*(p[i]^e[i] + 1)^2/((p[i]^e[i] - 1)*(p[i]^(e[i] + 1) - 1)))) == 1}; \\ Amiram Eldar, Sep 12 2022

Extensions

More terms from R. J. Mathar, Sep 27 2006
Showing 1-1 of 1 results.