A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).
0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
- T. Pisanski, D. Schattschneider and B. Servatius, Applying Burnside's lemma to a one-dimensional Escher problem, Math. Mag., 79 (2006), 167-180. See F(n).
Crossrefs
Programs
-
Maple
with(numtheory): V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611 H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
-
Mathematica
V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1]; H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0]; a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)]; a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)
Formula
See Maple program.