cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).

Original entry on oeis.org

0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2006

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory):
    V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
    H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
    A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
  • Mathematica
    V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
    H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
    a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
    a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

See Maple program.